
Swarm Formal Specification

Swarm Research Division

draft of August 12, 2025

2

Contents

1 Formal specification 13
1.1 DISC basics . 13

1.1.1 Notation . 13
1.1.2 Sequences . 13
1.1.3 Custom types . 15
1.1.4 XOR distance and proximity order 16
1.1.5 Binary Merkle tree hash . 17
1.1.6 Chunks . 18
1.1.7 Single Owner Chunks . 19
1.1.8 Segment inclusion proofs . 20
1.1.9 Postage stamps . 23
1.1.10 Ordering and sampling . 23

1.2 Redistribution game . 25
1.2.1 Transactions and on-chain registers 25
1.2.2 Random nonces . 27
1.2.3 Winner selection and claim validation 28
1.2.4 Proofs of reserve . 32

2 Data types and algorithms 37
2.1 Built-in primitives . 37

2.1.1 Crypto . 37
2.1.2 State store . 43
2.1.3 Local context and configuration . 44

2.2 Bzz address . 44
2.2.1 Overlay address . 44
2.2.2 Underlay address . 45
2.2.3 BZZ address . 45

2.3 Chunks, encryption and addressing . 47
2.3.1 Content addressed chunks . 47
2.3.2 Single owner chunk . 50
2.3.3 Binary Merkle Tree Hash . 51
2.3.4 Encryption . 52

3

2.4 Postage stamps . 54
2.4.1 Witness type . 54
2.4.2 Contract Upgrades . 55

2.5 Files, manifests and data structures . 56
2.5.1 Files and the Swarm hash . 56
2.5.2 Manifests . 59
2.5.3 Resolver . 63
2.5.4 Pinning . 64
2.5.5 Tags . 64
2.5.6 Storage . 65

2.6 Access Control . 66
2.7 PSS . 69

2.7.1 PSS message . 69
2.7.2 Direct pss message with trojan chunk 69
2.7.3 Envelopes . 73
2.7.4 Update notifications . 73
2.7.5 Chunk recovery . 73

I Appendix 75

A Density-based size estimation 77

B Source of randomness 83

C Parameter constants 85

4

List of definitions

1 Definition (sequences) . 13
2 Definition (segmentation) . 14
3 Definition (Swarm overlay address of node n) 15
4 Definition (DISC custom types) . 15
5 Definition (XOR distance (χ)) . 16
6 Definition (Proximity order (PO)) . 16
7 Definition (Binary Merkle Tree Root) . 17
8 Definition (Binary Merkle Tree Hash) . 18
9 Definition (Content addressed chunks) . 18
10 Definition (Single owner chunks) . 19
11 Definition (Packed address chunk) . 20
12 Definition (BMT segment inclusion proof) 20
13 Definition (BMT prover function) . 21
14 Definition (BMT SIP validation) . 22
15 Definition (Single owner chunks data integrity proof) 22
16 Definition (Single owner chunks data integrity validation) 22
17 Definition (Postage stamps) . 23
18 Definition (Storage slot reference) . 23
19 Definition (Postage stamp validity) . 23
20 Lemma (Ordering and indexing functions) 23
21 Corollary (hash orders) . 24
22 Definition (Sampler function) . 24
23 Definition (Redistribution game round) . 25
24 Definition (Stakes) . 25
25 Definition (Commits) . 26
26 Definition (Reveals) . 26
27 Definition (Random nonces for the round) 27
28 Definition (Prefixed hash) . 28
29 Definition (Transformed chunk reserve sample) 29
30 Definition (Chunk reserve sample commitment hash) 29
31 Definition (Transformed slots reserve sample) 30
32 Definition (Transformed slots reserve sample commitment hash) 30

5

33 Definition (Weighted selection) . 30
34 Definition (Truth selection) . 31
35 Definition (Honest reveals) . 31
36 Definition (Winner selection) . 31
37 Definition (Proof of reserve) . 32
38 Definition (Proof of reserve validation) . 32
39 Definition (Proof of chunk density validation) 33
40 Definition (Proof of stamp density validation) 33
41 Definition (Proof of entitlement) . 34
42 Definition (Winner’s claim validation) . 34
43 Corollary (Outpayment scheme is fair) . 35

44 Definition (Hashing) . 37
45 Definition (Random number generation) . 38
46 Definition (Scrypt key derivation) . 38
47 Definition (Mining a nonce) . 39
48 Definition (Blockcipher) . 39
49 Definition (Elliptic curve key generation) . 40
50 Definition (Asymmetric encryption) . 41
51 Definition (Signature) . 41
52 Definition (Shared secret) . 42
53 Definition (CRS erasure code interface definition) 43
54 Definition (CRS erasure coding parameters) 43
55 Definition (State store) . 43
56 Definition (Context) . 44
57 Definition (Swarm overlay address of node A) 44
58 Definition (Swarm underlay multiaddress) 45
59 Definition (Swarm bzz address transfer format) 45
60 Definition (Signed underlay address of node A) 46
61 Definition (Node addresses: overlay, underlay, bzz address) 46
62 Definition (segment, payload, span, branches) 47
63 Definition (Chunk reference) . 48
64 Definition (Content addressed chunk) . 48
65 Definition (Span to payload length) . 49
66 Definition (Chunk API retrieval) . 49
67 Definition (Chunk API: storage) . 49
68 Definition (Single owner chunks) . 50
69 Definition (Single owner chunk API: retrieval) 50
70 Definition (Single owner chunk API: storage) 51
71 Definition (BMT hash) . 52
72 Definition (Chunk encryption/decryption API) 53
73 Definition (Postage contract) . 55

6

74 Definition (Postage stamp basic types: batchID, address, witness, stamp, va-
lidity) . 55

75 Definition (File API: upload/storage; swarm hash) 56
76 Definition (File API: download/retrieval) . 58
77 Definition (File info) . 59
78 Definition (Manifest entry) . 59
79 Definition (Manifest data structure) . 60
80 Definition (Manifest API: path lookup) . 60
81 Definition (Manifest API: update) . 61
82 Definition (Manifest API: remove) . 61
83 Definition (Manifest API: merge) . 62
84 Definition (Resolver) . 63
85 Definition (Pinning) . 64
86 Definition (Tags) . 64
87 Definition (Public storage API) . 65
88 Definition (Access control: auth, hint, parameters, root access manifest) . . . 66
89 Definition (Session key and auth with credentials) 67
90 Definition (Access key) . 67
91 Definition (Access control API: lock/unlock) 68
92 Definition (ACT manipulation API: add/remove) 68
93 Definition (Basic types: topic, targets, recipient, message and trojan) 69
94 Definition (Sealing/unsealing the message) 70
95 Definition (Wrapping/unwrapping) . 71
96 Definition (Incoming message handling) . 71
97 Definition (pss API: send) . 72
98 Definition (pss API: receive) . 72
99 Definition (Envelope) . 73
100 Definition (Targeted delivery request) . 73
101 Definition (Prod missing chunk notification with recovery request) 74
102 Definition (Recovery response) . 74
103 Definition (Random seed for the round) . 84
104 Lemma (Round seed is a secure random oracle) 84

7

8

List of Figures

1.1 BMT: Binary Merkle Tree hash . 17
1.2 Compact segment inclusion proofs for chunks 21

A.1 Probability density function of the Erlang distribution 79
A.2 The 16th smallest value among 500 random variates on unit interval 79
A.3 Recall and precision of proof of reserve size validation 81
A.4 Optimal accuracy of reserve size probe . 82

9

10

List of Tables

2.1 Size of chunk spans . 56

A.1 Proof of density parameter calibration . 82

C.1 Parameter constants . 86

11

12

Chapter 1

Formal specification

1.1 DISC basics

1.1.1 Notation

— roman – predicates standing for blockchain verifiable properties
— smallcaps– field of a composite, tuple member function
— Πp – proof constructor function
— Vp – validator function
— TT FONT – constant parameter (see appendix ??)
— uint [d] – left closed, right open integer range [0, 2d)

1.1.2 Sequences

Definition 1 – sequences .
Define τ{n}, the non-polymorphic sequences of length n (non-negative) over any type τ as
an indexing function:

τ{n} def
=

{
∅ if n = 0

0, n− 1 → τ if n > 0
(1.1)

τ+
def
=

⋃
n∈Z+

τ{n} (1.2)

τ∗ def
= {∅} ∪ τ+ (1.3)

(1.4)

13

Length function len:

len(s) : τ → uint64 (1.5)

len(s)
def
=

{
0 if s = ∅
n if s ∈ τ{n}

(1.6)

The positional index ’at’ function:

[] : τ∗ → ×uint64 → τ (1.7)

s[] : 0, len(s)− 1 → τ (1.8)

s[i]
def
= s′(i) (1.9)

Define the concatenation operator ’⊕’:

(x⊕ y) : 0, len(x) + len(y)− 1 → τ (1.10)

(x⊕ y)[i]
def
=

{
x[i] if 0 ≤ i < len(x)

y[i− len(x)] otherwise
(1.11)

Define slices (subsequences) with the range operator ’:’:

(s[o : o+ l]) : 0, l − 1 → τ (1.12)

(s[o : o+ l])[i]
def
= s[o+ i] (1.13)

where

o, l ≥ 0 ∧ (1.14)

len(x) ≥ o+ l (1.15)

Let us also define empty, prefix and suffix slices:

s[x :x]
def
= ∅ (1.16)

s[:x]
def
= s[0 :x] (1.17)

s[x :]
def
= s[x : len(s)] (1.18)

As a special case byte slices are defined as sequences of 8-bit integers.

Definition 2 – segmentation.
Define segment as an at most 32 long byte slice, and define segmentation of a slice of bytes as
the partitioning of the slice into consecutive segments. Define segment count as the number
of segments that cover a byte slice:

SegCnt : byte∗ → uint64 (1.19)

SegCnt(s)
def
= int

(
len(s)− 1

32

)
+ 1 (1.20)

14

Now we can define the segment indexing function [[]] which maps the byte slice s and an
index i to the i-the segment in the segmentation of s:

[[]] : byte∗ → uint64 → Segment (1.21)

s[[]] : 0, SegCnt(s)− 1 → Segment (1.22)

s[[i]]
def
=

{
s[32 · i :] if i = SegCnt − 1

s[32 · i : 32 · (i+ 1)] otherwise
(1.23)

1.1.3 Custom types

Definition 3 – Swarm overlay address of node n.
A Swarm node is associated with an Ethereum account that the node operator must possess
the private key for, called bzz account (Kbzz

n). The node’s overlay address is derived as the
hash of the binary serialisation of the Ethereum address of this account with the Swarm
network ID and a minable nonce appended.

overlay(n)
def
= H (acc⊕ id⊕ ν) (1.24)

where

eth address acc = Account(Kn) (1.25)

network id id = BZZ NETWORK ID (1.26)

overlay nonce ν ∈ Nonce (1.27)

Definition 4 – DISC custom types .
Let us define the DISC specific custom types used in the formalisation.

Segment ≡ byte{32} ≡ uint256
32-long slice of raw bytes
in numerical context cast as BigEndian encoded 256-bit unsigned integer

Address ≡ Segment
swarm chunk address, swarm peers’ overlay address

Nonce ≡ Segment
deterministically random Segment

Account ≡ byte{20}
Ethereum address deriveed from EC keypair K
Account(K)

def
= H (PubKey(K))[12 : 32]

Nodes ≡ Segment
swarm client node (peer)

15

Sig ≡ byte{65}
⟨r, s, v⟩ representation of an EC signature (32+32+1 bytes)

Timestamp ≡ uint64
64-bit unsigned integer for unix time, nanosecond resolution
big endian binary serialisation.

H : byte∗ → Segment
the 256-bit Keccak SHA3 hash function, the base hash used in swarm.

1.1.4 XOR distance and proximity order

Definition 5 – XOR distance (χ).
Consider the set of bit sequences with fixed length d as points in a space. Define a distance
metric χ such that the distance between two such sequences is the numerical value of their
bitwise XOR (∧) using big endian (= most significant bit first) encoding.

χ : uint [d]× uint [d] → uint [d] (1.28)

χ(x, y)
def
= Uintd(BE d(x)∧BE d(x))) (1.29)

Given the fixed length d > 0, there is a maximum distance (2d − 1 = χ(0{d}, 1{d})) in this
space, and thus we can define the notion of normalised distance:

χ : uint [d]× uint [d] → Q[0, 1] (1.30)

χ(x, y)
def
=

χ(x, y)

2d − 1
(1.31)

Definition 6 – Proximity order (PO).
Proximity order (PO) is a discrete logarithmic scaling of proximity.

PO : uint [d]× uint [d] → 0, d (1.32)

PO(x, y)
def
=

{
d if x = y

int(log2(Proximity(x, y))) otherwise
(1.33)

where proximity is the inverse of normalised distance:

Proximity : uint [d]× uint [d] → uint [d] (1.34)

Proximity(x, y)
def
=

1

χ(x, y)
(1.35)

16

Given two points x and y, the order of their proximity PO(x, y) equals the number of initial
bits shared by their respective most significant bit first binary representations. In practice,
with d = 256, uint [d] ≡ Segment , so PO also applies to a pair of slices of 32 bytes.

1.1.5 Binary Merkle tree hash

HRBMT Chunk Hash

13378 byte span H7
0 BMT Root

H6
0

H5
0

H4
0

H3
0

H2
0

H1
0

D0
0

32 byte seg-
ments.

D0
1

H1
1

H2
1

H3
1

H4
1

H3
4 H3

5

H2
10

H1
21 H1

22

D0
42 D0

43

H2
11

H5
1

H6
1

H5
2 H5

3

H4
6 H4

7

H3
14 H3

15

H3
30 H2

31

H1
62 H1

63

D0
126 D0

127

zero padding if
needed to fill 4Kb.

Figure 1.1: BMT (Binary Merkle Tree) used as the native chunk hash in Swarm. In this example,
1337 bytes of chunk data is segmented into 32 byte segments. Zero padding is used to fill up the rest
up to 4 kilobytes. Pairs of segments are hashed together using the ethereum-native Keccak256 hash
to build up the binary tree. On level 8, the binary Merkle root is prepended with the 8 byte span and
hashed to yield the BMT chunk hash.

The BMT chunk address is the hash of the 8 byte metadata (span) and the root hash of a
binary Merkle tree (BMT) built on the 32-byte segments of the underlying data (see figure
1.1). If the chunk content is less than 4k, the hash is calculated as if the chunk was padded
with all zeros up to 4096 bytes.

Definition 7 – Binary Merkle Tree Root .
Define △[H , n](i, d) as the Binary Merkle Tree Root of data d fitting in at most 2n 32-byte

17

segments using H as its base hash:

△ : (byte∗ → Segment)× uint8 → uint8 × byte∗ → Segment (1.36)

△[H , n] = : 0, n× byte{, 2n} → Segment (1.37)

△[H , n](i, d)
def
=


d if i = 0

△[H , n](i, d⊕ 0{2n+5 − len(d)}) if len(d) < 2i+5

H (△[H , n](d[: 2i−1], i− 1)⊕
⊕△[H , n](d[2i−1 :], i− 1)) otherwise

(1.38)

Definition 8 – Binary Merkle Tree Hash .
Define BMT [H](d,m) as the hash of Binary Merkle Tree Root of chunk length data d
prepended with metadata m. H is the base hash function, by default 256-bit Keccak. Note
that a chunk size blob of bytes can accommodate 128 32-byte segments, hence depth 7:

BMT : (byte∗ → Segment) → Chunk × byte{8} → Segment (1.39)

BMT [H] : Chunk × byte{8} → Segment (1.40)

BMT [H](d,m)
def
= H (m⊕△[H , 7](7, d)) (1.41)

1.1.6 Chunks

Definition 9 – Content addressed chunks .
Define content address chunk c as a function from bytes data with size limit of 4096 bytes
and an associated address calculated with BMT:

CAC : Chunk × byte{8} → Chunks (1.42)

CAC (d,m)
def
= ⟨addr, cont⟩ (1.43)

such that

addr
def
= BMT (d,m) (1.44)

cont
def
= m⊕ d (1.45)

By convention the metadata prefix m encodes the span using 64-bit little endian. If the
chunk is an intermediate chunk (see definition 11), the span is the length of the data that
the subtree spans over. If the chunk is a data chunk, then span encodes the data length:

m
def
= LE 64(len(d)) (1.46)

18

We also say that for cac = CAC (d,m) = ⟨addr, cont⟩:

address(cac)
def
= addr (1.47)

payload(cac)
def
= cont (1.48)

data(cac)
def
= d (1.49)

metadata(cac)
def
= m (1.50)

For convenience SegCnt and the segment indexing function ’[[]]’ can be trivially extended
to apply to chunks:

SegCnt : Chunks → uint64 (1.51)

SegCnt(c)
def
= SegCnt(data(c)) (1.52)

[[]] : Chunks × uint64 → Segment (1.53)

c[[i]]
def
= data(c)[[i]] (1.54)

1.1.7 Single Owner Chunks

Definition 10 – Single owner chunks .
A single owner chunk is defined as a content addressed chunk associated with an ID and an
ethereum address:

SOC
def
= Account × Segment × CAC → Chunks (1.55)

SOC (owner, id, cac)
def
= ⟨addr, cont⟩ (1.56)

where

addr
def
= H (o⊕ id) (1.57)

cont
def
= id⊕ Sig(o, id⊕address(cac))⊕payload(cac) (1.58)

A single owner chunk’s address is the Keccak256 hash of identifier prepended to owner
account, while its data is serialised as follows:

– identifier – 32 bytes arbitrary identifier,
– signature – 65 bytes ⟨r, s, v⟩ representation of an EC signature (32+32+1 bytes),

19

– span – 8 byte little endian binary of uint64 chunk span,
– data – max 4096 bytes of regular chunk data.

Integrity of a single owner chunk is verified with the following process:

1. Deserialise the chunk content into fields for identifier, signature and payload.
2. Construct the expected plaintext composed of the identifier and the BMT hash of the

payload.
3. Recover the owner’s address from the signature using the plaintext.
4. Check the hash of the identifier and the owner (expected address) against the chunk

address.

Definition 11 – Packed address chunk.
Define the packed address chunk for a sequence of chunks C as the concatenation of all the
addresses of the chunks in the sequence:

PAC : Chunks∗ × byte{8} → Chunks (1.59)

PAC (C,m)
def
= CAC

(⊕len(C)−1

i=0
Address(C[i]),m

)
(1.60)

1.1.8 Segment inclusion proofs

Using BMT hashes allows for compact segment inclusion proofs (substring relationship with
a 32-byte resolution).

Definition 12 – BMT segment inclusion proof .
Define Πsip(c, i) as the BMT inclusion proof on chunk c for segment index i:

Πsip : Chunks × 0, 127 → SIP (1.61)

SIP
def
= Segment × Segment7 × byte{8} (1.62)

Πsip(c, i)
def
= ⟨c[[i]], ⟨h0, h1, . . . , h6⟩,metadata(c)⟩ (1.63)

where

hj
def
= BMT (sj, j) (1.64)

sj
def
= c[start(i, j) : start(i, j) + 32 · 2j] (1.65)

where

start(i, j)
def
=


0 if j = 7

start(i, j + 1) if int (i/2j) = 0 mod 2

start(i, j + 1) + 32 · 2j otherwise

(1.66)

20

H3

0

0

1

1

1

0

0

spanthe bits of
the index

BMT
inclusion proof

apply from

0 right

0 right

0 right

0 right

data segment 26

1 left

1 left

1 left

H

H

H

P4 H

P5

P6

P3 H

H P2

P1 H

D P026

D26

P0

P1

P2

P3

P5

P6

span

Figure 1.2: Compact segment inclusion proofs for chunks. Assume we need proof for segment 26
of a chunk (yellow). The orange hashes of the BMT are the sister nodes on the path from the data
segment up to the root and constitute what needs to be part of a proof. When these are provided
together with the root hash and the segment index, the proof can be verified. The side on which
proof item i needs to be applied depends on the i-th bit (starting from least significant) of the binary
representation of the index. Finally the span is prepended and the resulting hash should match the
chunk root hash.

In order to validate segment inclusion proofs we first introduce the prover hash function HΠ.

Definition 13 – BMT prover function.

HΠ : 0, 127× SIP → Address (1.67)

HΠ(i, ⟨d, sisters,m⟩) def
= H (m,H△

Π (7, d, sisters)) (1.68)

21

where

H△
Π : 0, 7× Segment × Segment7 → Address (1.69)

H△
Π (j, d, s)

def
=


d if j = 0

H (H△
Π (j − 1, d, s)⊕ s[j − 1]) if int(i/2j−1) = 0 mod 2

H (s[j − 1]⊕H△
Π (j − 1, d, s)) otherwise

(1.70)

Definition 14 – BMT SIP validation .
Define Vsip(a, i, p) as the validator of a BMT segment inclusion proof p for chunk at address
a on segment index i:

Vsip : Segment × 0, 127× SIP → {T, F} (1.71)

Vsip(a, i, p) ⇔ HΠ(i, p) = a (1.72)

Definition 15 – Single owner chunks data integrity proof .
Define a single owner chunk storage proof Πsoc(c, i) as a segment inclusion proof of the data
payload of SOC c on index i together with the ID and signature of SOC c:

SIPSOC
def
= SIP × Sig × Segment (1.73)

Πsip[soc] : SOC × 0, 127 → SIPSOC (1.74)

Πsip[soc](⟨o, id, cac⟩, i) def
= ⟨p, sig, id⟩ (1.75)

where

p = Πsip(cac, i) (1.76)

sig = Sig(o, id⊕ address(cac)) (1.77)

Definition 16 – Single owner chunks data integrity validation .
Define Vsip[soc](a, i, p) as the validator of a single owner chunk storage proof p for chunk at
address a on segment index i:

Vsip[soc] : Address × 0, 127× SIPSOC → {T,F} (1.78)

Vsip[soc](a, i, ⟨p, sig, id⟩) ⇔ a = H (id⊕ o) (1.79)

such that

owner o = ECRecover(sig, id⊕ a′) (1.80)

payload a′ = HΠ(i, p) (1.81)

22

1.1.9 Postage stamps

Definition 17 – Postage stamps .

Stamps
def
= Segment × uint64 × Timestamp × Address (1.82)

ps = ⟨b, i, ts, a⟩ ∈ Stamps (1.83)

batchID(ps)
def
= b (1.84)

index(ps)
def
= i (1.85)

timestamp(ps)
def
= ts (1.86)

address(ps)
def
= a (1.87)

Definition 18 – Storage slot reference .
Define the storage slot reference slot(ps) of a postage stamp ps as the tuple of the batch
identifier and the within-batch stamp counter:

Slots
def
= Segment × uint64 (1.88)

slot : Stamps → Slots (1.89)

slot(ps)
def
= ⟨batchID(ps), index(ps)⟩ (1.90)

Definition 19 – Postage stamp validity .
Define Vstamp(ps) as the validator of the proof of relevance expressed as the postage stamp
ps relying on blockchain information:

Vstamp : Stamps × Γ× Nodes → {T, F} (1.91)

Vstamp(ps, γ, n) ⇔ (1.92)

authentic batchID(ps) ∈ Batches(γ) ∧ (1.93)

alive Balance(ps) > 0 ∧ (1.94)

authorised ECRecover(Sig(ps), encode(ps)) = Owner(ps) ∧ (1.95)

available 0 <= index(ps) < Size(ps) ∧ (1.96)

aligned PO(index(ps), n) ≥ depth(reveal(γ, n)) (1.97)

1.1.10 Ordering and sampling

Lemma 20 – Ordering and indexing functions.
Given an arbitrary finite set C, and another set I with a total order <. Any invertible

23

function total over C, f : C → I defines a total order <f over C as follows:

<f ⊆ C × C (1.98)

∀c, c′ ∈ C, c <f c′ ⇔ f(c) < f(c′) (1.99)

Proof. f is injective wrt I, so Image(f) = J ⊆ I. Since < restricted to a subset (<J) is also
a total order over J . Since f is invertible, C and J are isomorphic and therefore the total
order < on J carries over to C.

Corollary 21 – hash orders.
Any hash function defines a total order on a finite set of byte slices.

Proof. The collision free nature of the hash function makes it practically invertible. The
actual hashes when read as binary encodings of integers, offer a natural integer ordering over
the values.

Example: the prefixed BMT hash transform (see 28) defines a total order over a set of
chunks.

Definition 22 – Sampler function.
Using f and its derivative ordering on C ⊆ Dom(f) we represent C as an ordered sequence:

−→
Seq : (T → T)× P(T) → T∗ (1.100)

−→
Seq(f, C)

def
= C ′ (1.101)

such that f(C ′[i]) < f(C ′[j]) for every 0 ≤ i < j < |C| (1.102)

Finally, we define a sampler function for any f invertible with an image having a total order
and C ⊆ Dom(f) such that it selects a prefix slice of length l from the ordered C:

Sampler : (T → T)× P(T)× uint64 → T+ (1.103)

Sampler(f, C, l)
def
=

−→
Seq(f, C)[: l] (1.104)

24

1.2 Redistribution game

Definition 23 – Redistribution game round.
Define γ as a redistribution game round. γ is conceived of as a multidimensional index:

Γ
def
= uint64 × uint64 × uint64 (1.105)

γ ∈ Γ = ⟨c, σ, i⟩ (1.106)

chain(γ) c ID of the blockchain context (1.107)

series(γ) σ index of the parallel series (1.108)

round(γ) i sequential index of the round (1.109)

Define block(γ) as the starting block height of this particular game γ:

block(γ)
def
= round(γ) · ROUND LENGTH+ START BLOCK (1.110)

Ordering by sequential index defines the chain of games, which lets us define the Prev
function:

Prev : Γ → Γ (1.111)

Prev(⟨c, σ, i⟩) def
= ⟨c, σ, i− 1⟩ (1.112)

1.2.1 Transactions and on-chain registers

The smart contract receives transactions from applicants in phases. The following virtual
registers capture the information given in these transactions that are relevant for defining
the winner:

– batches (see definition 19)
– stakes (see definition 24)
– commits (see definition 25)
– reveals (see definition 26)

Definition 24 – Stakes .
We define Stakes as the registry of stakes resulting from transactions sent to the staking
contract. A record is a tuple of a node overlay, the stake balance and the committed stake

25

and can be updated.

Stakes : Γ → Nodes × uint64 × uint64 (1.113)

⟨n, s,m⟩ ∈ Stakes(γ) ⇔ (1.114)

right age ∃b′ < b− MIN STAKE AGE, τ ∈ Transactions(b′) (1.115)

node overlay n = H (origin(τ)⊕ BZZ NETWORK ID⊕ data(τ)[0]) (1.116)

stake balance s = amount(τ) (1.117)

committed stake m = data(τ)[1] (1.118)

There is only one stake allowed per node, so we can define the staked amount belonging to
a node as the minumum of the stake balance and the committed stake times the unit price
of storage:

Stake : Γ× Nodes → uint64 (1.119)

Stake(γ, n)
def
= min(s,m · Price(γ)) (1.120)

Definition 25 – Commits .
We define Commits(γ) as the registry of applications for a game γ resulting from a transac-
tion sent to the game contract’s commit endpoint. A tuple of the overlay of the committing
node, its commitment hash and the number of the block containing the transaction is en-
tered in the register after verifying that (i) the transaction was sent during the commit phase
(right time), and (ii) that the node has enough stake and is not frozen (right amount).

Commits : Γ → Nodes × Segment × Blocks (1.121)

⟨n, h, b⟩ ∈ Commits(γ) ⇔ (1.122)

right time b < PHASE LENGTH mod ROUND LENGTH (1.123)

right amount stake(γ, n) ≥ MINIMUM STAKE (1.124)

(redundancy) (1.125)

Definition 26 – Reveals.
We define Reveals as the registry of reveals resulting from a transaction sent to the game
contract’s reveal endpoint. The reveal record is a tuple of the node overlay, the two commit-
ment hashes, the self-reported storage depth, a serial index used for sorting, the obfuscation
key, and the block number. The record is entered in the register after it is validated that
(i) it was submitted during the reveal phase (right time), (ii) the commitments when obfus-
cated match the commit by the same node (right reveal), and (iii) that the neighbourhood
selection anchor falls within the node’s area of responsibility using the self-reported depth

26

(right location).

RevealEntry : Nodes × Address2 × uint8 2 × Nonce × Blocks(1.126)

Reveals : Γ → P(RevealEntry) (1.127)

r = ⟨n, chc, chs, sd, i, k, b⟩ ∈ Reveals(γ) ⇔ ⟨ (1.128)

node(r) = n (1.129)

chc(r) = chc (1.130)

chs(r) = chs (1.131)

depth(r) = sd (1.132)

index(r) = i (1.133)

nonce(r) = k (1.134)

block(r) = b (1.135)

⟩ (1.136)

⇔ (1.137)

right time p ≤ b < 2p mod r (1.138)

p = PHASE LENGTH, r = ROUND LENGTH (1.139)

right reveal H (n⊕ sd⊕ chc⊕ chs⊕ k) = h such that(1.140)

⟨n, h, b′⟩ ∈ Commits(γ) for some b′ (1.141)

right location PO(addr(n),NSA(Prev(γ))) ≥ sd (1.142)

(responsibility) (1.143)

There is only one reveal allowed per node, so we can define the reveal belonging to a node:

Reveal : Γ× Nodes → RevealEntry (1.144)

Reveal(γ, n) = r (1.145)

such that

n = Node(r) (1.146)

r ∈ Reveals(γ) (1.147)

1.2.2 Random nonces

Definition 27 – Random nonces for the round.
From the round’s random seed (see definition 103 appendix ??) we can derive all the necessary

27

random input nonces:

N.hood Selection Anchor NSA(γ)
def
= H (R(γ)⊕BE64(SK (γ))) (1.148)

Truth Selection Nonces TSN (γ)
def
= H (R(γ)⊕BE 8(0)) (1.149)

Winner Selection Nonces WSN (γ, i)
def
= H (R(γ)⊕BE 8(1)) (1.150)

Reserve sampling salt RSS (γ)
def
= H (R(γ)) (1.151)

Segment Selection Nonce SSN (γ, i)
def
= H (R(γ)⊕BE 8(i)) (1.152)

where

SK : Γ → uint64 (1.153)

SK (γ)
def
=

{
0 if |Reveals(γ)| > 0

SK (Prev(γ)) + 1 otherwise
(1.154)

Let us now define the witness selection function W that selects two random witness indexes
as well as the last index of the reserve sample such that they are all distinct:

W : Γ× uint64 × {0, 1, 2} → uint8 (1.155)

W(γ,m, k)
def
=



SSN (γ, 0) mod m− 1 if k = 0

m− 1 if k = 2

m− 2 if k = 1∧
SSN (γ, 0) = SSN (γ, 1) mod m− 1

SSN (γ, 1) mod m− 2 otherwise

(1.156)

1.2.3 Winner selection and claim validation

Definition 28 – Prefixed hash .
Define the hash prefixing function prefix (H, p) as a function which when applied to a hash
function H and a constant byte slice p outputs a hash function which for every input returns
the hash of the input prefixed by p using H.

prefix : (byte∗ → Segment)× byte∗ → (byte∗ → Segment) (1.157)

prefix (H, p) : byte∗ → Segment (1.158)

prefix (H, p)(b)
def
= H(p⊕ b) (1.159)

Exceptionally, we define the prefixed version of BMT hash (denoted as BMT []) as one that
uses the prefixed verson of its base hash:

BMT [] : byte∗ → Chunk × byte{8} → Segment (1.160)

BMT [p]
def
= BMT [prefix (H , p)] (1.161)

28

Definition 29 – Transformed chunk reserve sample.
Let us now define the chunk transformation function ∆C(p) for a random nonce prefix p as
follows:

∆C : Nonce → Chunks → Segment (1.162)

∆C(p) : Chunks → Segment (1.163)

∆C(p)(c)
def
= BMT [p](data(c),metadata(c)) (1.164)

Define the transformed reserve sample RSC (γ, n) for game γ and node n as the first 2d

chunks of the node’s reserve at block block(γ), using the ordering defined (see lemma 20
and definition 22) by the hash (see definition 28) of their data using BMT with 256-bit
Keccak prefixed with random nonce p as its base hash.

RSC : Γ× Nodes → Chunks∗ (1.165)

RSC (γ, n)
def
= Sampler(∆C(p),Reserve(γ, n), 2d) (1.166)

where

d = SAMPLE DEPTH (see ??) (1.167)

p = RSS (γ) (see definition 27) (1.168)

Definition 30 – Chunk reserve sample commitment hash .
Define CH C (γ, n,) for game γ and node n as the BMT chunk hash of the packed address
chunk (see definition 11) packing the chunks of the transformed reserve sample (see definition
29) for game γ and node n.

CH C : Γ× Nodes → Address (1.169)

CH C (γ, n)
def
= Address(PACC (RSC (γ, n), p)) (1.170)

where

p = RSS (γ) (see definition 27) (1.171)

and where

PACC : Chunks∗ × Nonce → Chunks (1.172)

PACC (C, p)
def
= CAC

(⊕len(C)−1

i=0
Seg(C[i], p),m

)
(1.173)

where

Seg(C[i], p) = Address(C[i])⊕∆C(p)(C[i]) (1.174)

m = LE 64(2 · 32 · len(C)) (1.175)

29

Definition 31 – Transformed slots reserve sample.
Let us now define the slots transformation function ∆S(p) for a random nonce p as follows:

∆S : Nonce → Chunks → Segment (1.176)

∆S(p) : Chunks → Segment (1.177)

∆S(p)(c)
def
= H [p](Slot(Stamp(c))) (1.178)

Define the transformed reserve sample RS S (γ, n) for game γ and node n as the first 2d chunks
of the node’s reserve at block block(γ), using the ordering defined by the slot transformation
function using prefix p:

RS S : Γ× Nodes → Chunks∗ (1.179)

RS S (γ, n)
def
= Sampler(∆S(p),Reserve(γ, n), 2d) (1.180)

where

d = SAMPLE DEPTH (see ??) (1.181)

p = RSS (γ) (see definition 27) (1.182)

Definition 32 – Transformed slots reserve sample commitment hash .
Define CH S (γ, n) for game γ and node n as the BMT chunk hash of the packed address
chunk (see definition 11) the chunks of the transformed reserve sample (see definition 29) for
game γ and node n.

CH S : Γ× Nodes → Address (1.183)

CH S (γ, n)
def
= Address(PAC (RS S (γ, n),m)) (1.184)

where

m = LE 64(32 · 2d) (1.185)

d = SAMPLE DEPTH (see ??) (1.186)

Definition 33 – Weighted selection.
We define WeightedSelect(w, k) as a sampler function which selects an index 0 < i < len(w)
determined by the input nonce (pseudorandom number) k in such a way that the indexes
have a probability of being selected proportional to the weights in w.

WeightedSelect : uint256+× uint256 → uint256+ (1.187)

WeightedSelect(w, k)
def
=

{
i if k < w[i] mod W[i]

WeightedSelect(w[: i], k) otherwise
(1.188)

30

such that i = len(w)− 1, and where W (cumulative weights) is defined as

W : uint256+ → uint256 (1.189)

W[i]
def
=

{
w[0] if i = 0

W[i− 1]+ w[i] otherwise
(1.190)

Definition 34 – Truth selection.
We determine the truth from reveals through selection weighted by stake density using the
truth selection nonce as random input.

Truth : Γ → RevealEntry (1.191)

Truth(γ)
def
= R(γ)[WeightedSelect(weights ,TSN (γ))] (1.192)

where weights are stake densities such that

weights[i] = Stake(γ,node(R[i])) · 2depth(R[i]) (1.193)

where R is the reveals of the round sorted by index:

R =
−→
Seq(index,Reveals(γ)) (1.194)

Definition 35 – Honest reveals.
We define honest reveals as the subset of reveals for the round agreeing with the truth in
reserve commitment hashes and storage depth.

HonestReveals : Γ → RevealEntry∗ (1.195)

HonestReveals(γ)
def
=

−→
Seq(index, {r ∈ Reveals(γ)|Honest(r)}) (1.196)

where

Honest : RevealEntry → {T,F} (1.197)

Honest(r) ↔ (1.198)

chc(r) = chc(truth(γ)) ∧ (1.199)

chs(r) = chs(truth(γ)) ∧ (1.200)

depth(r) = depth(truth(γ)) (1.201)

Definition 36 – Winner selection.
We determine the winner from honest reveals through selection weighted by stake using the
winner selection nonce as random input.

Winner : Γ → RevealEntry (1.202)

Winner(γ)
def
= HonestReveals(γ)[WeightedSelect(weights ,WSN (γ))] (1.203)

31

where weights are stakes such that

weights[i] = Stake(γ,node(HonestReveals[i])) (1.204)

1.2.4 Proofs of reserve

Definition 37 – Proof of reserve .
Proof of reserve provides evidence that the reserve is replicating relevant content and shows
a proof of recency of retaining chunk data in full integrity.

POR : SIP2 × Stamps (1.205)

Πr : Γ× Chunks × Chunks+× {0, 1, 2} → POR (1.206)

Πr(γ, c, C, k)
def
= ⟨ (1.207)

witness proof Πsip(c, d · i), (1.208)

retention proof Πsip(C[i], j), (1.209)

postage stamp Stamp(C[i]) (1.210)

⟩ (1.211)

where

i = W(γ, len(C), k) (1.212)

j = SSN (γ, k) mod 128 (1.213)

d =
SegCnt(c)

len(C)

(
=

{
1 if C = RSS

2 if C = RSC

)
(1.214)

Definition 38 – Proof of reserve validation.

Vr : Γ× Nodes × Address × {0, 1, 2} × POR → {T,F} (1.215)

Vr(γ, n, ch, k, π) ↔ (1.216)

relevance Vsip(ch, d · i, pw) ∧ (1.217)

Vstamp(ps, γ, n) ∧ (1.218)

retention data(pw) = a ∧ (1.219)

Vsip(a, j, pr) ∧ (1.220)

recency i = W(γ, SegCnt(pw), k) ∧ (1.221)

j = SSN (γ, k) mod 128 ∧ (1.222)

retrievability PO(a, n) ≥ sd (1.223)

32

where

a = Address(ps) (1.224)

π = ⟨pw, pr, ps⟩ (1.225)

sd = depth(Reveal(γ, n)) (1.226)

d =
SegCnt(pw)

2D

(
=

{
1 if C = RSS

2 if C = RSC

)
(1.227)

D = SAMPLE DEPTH (see ??) (1.228)

Definition 39 – Proof of chunk density validation.
Define Vcd(γ, p0, p1, p2) as the validation function for the proof of chunk density for round γ
and proof of reserve and segment inclusion proof pairs p0, p1, p2.

PORT : POR × SIP (1.229)

Vcd : Γ× PORT 3 → {T,F} (1.230)

Vcd(γ, π0, π1, π2) ↔ (1.231)

right data segment data(prk) = data(ptk) for k ∈ {0, 1, 2} ∧ (1.232)

right address sister(pwk, 0) = tak for k ∈ {0, 1, 2} ∧ (1.233)

right order ta0 < ta1 < ta2 ∧ (1.234)

right size ta2 ≤ MAX SAMPLE VALUE (1.235)

where for k ∈ {0, 1, 2}

tak = HΠ(p, jk, ptk) (1.236)

jk = SSN (γ, k) mod 128 (1.237)

πk = ⟨⟨pwk, prk, ⟩, ptk⟩ (1.238)

and where

p = RSS (Prev(γ)) (see definition 27) (1.239)

Definition 40 – Proof of stamp density validation.
Define Vsd(γ, ps0, ps1, ps2) as the validation function for the proof of stamp density for round
γ and postage stamps ps0, ps1, ps2.

Vsd : Γ× Stamps3 → {T,F} (1.240)

Vsd(γ, ps0, ps1, ps2) ↔ (1.241)

right order ta0 < ta1 < ta2 ∧ (1.242)

right size ta2 ≤ MAX SAMPLE VALUE (1.243)

33

where for k ∈ {0, 1, 2}

tak = H (Slot(psk)⊕ p) (1.244)

and where

p = RSS (Prev(γ)) (see definition 27) (1.245)

Definition 41 – Proof of entitlement.
Proof of entitlement captures all the evidence a node needs to submit with their claim
transaction to valildate.

POE : PORT 3 × POR3 (1.246)

Πent : Γ× Nodes → POE (1.247)

Πent(γ, n)
def
= ⟨ (1.248)

⟨Πpor(γ, n,PACC (crs, p), crs, 0), pt0⟩, (1.249)

⟨Πpor(γ, n,PACC (crs, p), crs, 1), pt1⟩, (1.250)

⟨Πpor(γ, n,PACC (crs, p), crs, 2), pt2⟩, (1.251)

Πpor(γ, n,PAC (srs), srs, 0), (1.252)

Πpor(γ, n,PAC (srs), srs, 1), (1.253)

Πpor(γ, n,PAC (srs), srs, 2), (1.254)

⟩ (1.255)

where for k ∈ {0, 1, 2}

ptk = Πsip
prefix (p, r[ik], jk) (1.256)

jk = SSN (γ, k) mod 128 (1.257)

ik = W(γ, length(crs), k) (1.258)

and where

crs = RSC (γ, n) (1.259)

srs = RS S (γ, n) (1.260)

p = RSS (Prev(γ)) (see definition 27) (1.261)

Definition 42 – Winner’s claim validation.
Define Vpoe(γ, p) as the validation function for the proof of entitlement p as part of the

34

winning claim for game γ:

Vpoe : Γ× POE → {T,F} (1.262)

Vpoe(γ, p) ⇔ (1.263)

reserve: (1.264)

chunks ∀k ∈ {0, 1, 2},Vr(γ, n,chc(r), k, πk) ∧ (1.265)

stamps ∀k ∈ {0, 1, 2},Vr(γ, n,chs(r), k, ϕk) ∧ (1.266)

reserve size: (1.267)

chunk density Vcd(γ, ⟨π0, pt0⟩, ⟨π1, pt1⟩, ⟨π2, pt2⟩) ∧ (1.268)

stamp density Vsd(γ,ps(ϕ0),ps(ϕ1),ps(ϕ2)) (1.269)

where

n = node(r) (1.270)

r = Winner(γ) (1.271)

p = ⟨⟨π0, pt0⟩, ⟨π1, pt1⟩, ⟨π2, pt2⟩, ϕ0, ϕ1, ϕ2⟩ (1.272)

Corollary 43 – Outpayment scheme is fair.
Rewarding the pot to randomly selected neighbourhood implements a redistribution scheme
that is fair across neighbourhoods.

Proof. With the consensus mechanism we can show that the Nash-optimal strategy of nodes
is to follow the protocol and consent on the reserve. On the other hand, the optimal strategy
for uploaders is to uniformly distribute chunks across the name space. As a consequence,
nodes are expected to have identical storage depth and its variance is independent of being
chosen. Long term then relative cumulative outpayments by the redistribution game converge
to the fair share.

Secondly, we argue that the mode of selecting the winner is fair within neighbourhoods.

Proof.

35

36

Chapter 2

Data types and algorithms

2.1 Built-in primitives

2.1.1 Crypto

This section describes the crypto primitives used throughout the specification. They are ex-
posed as buzz built-in functions. The modules are hashing, random number generation, key
derivation, symmetric and asymmetric encryption (ECIES), mining (i.e., finding a nonce), el-
liptic curve key generation, digital signature (ECDSA), Diffie–Hellman shared secret (ECDH)
and Reed-Solomon (RS) erasure coding.

Some of the built-in crypto primitives (notably, sha3 hash, and ECDSA ecrecover) are repli-
cating crypto functionality of the Ethereum VM. These are defined here with the help of
ethereum api calls to a smart contract. This smart contract just implements the primitives
of ”buzz” and only has read methods.

Hashing

The base hash function implements Keccak256 hash as used in Ethereum.

Definition 44 – Hashing.
1// /crypto

2

3define function hash @input []byte
4?and/with @suff
5return segment
6as

37

7ethereum/call "sha3" with @input append= @suff
8on context contracts "buzz"

Random number generation

Definition 45 – Random number generation.
1// /crypto

2

3define function random type
4return [@type size]byte

Scrypt key derivation

The crypto key derivation function implements scrypt

Definition 46 – Scrypt key derivation.
1// /crypto

2

3define type salt as [segment size]byte
4

5define type key as [segment size]byte
6

7// params for scrypt key derivation function
8// scrypt.key(password , salt , n, r, p, 32) to generate key
9

10define type kdf
11n int // 262144
12r int // 8
13p int // 1
14

15define function scrypt from @password
16with salt
17using kdf
18return key

38

Mining helper

This module provides a very simple helper function that finds a nonce that when given as
the single argument to a mining function returns true.

Definition 47 – Mining a nonce.
1// /crypto

2

3define type nonce as [segment size]byte
4

5define function mine @f function of nonce return bool
6as
7@nonce = random key
8return @nonce if call @f @nonce
9self @f

Symmetric encryption

Symmetric encryption uses a modified blockcipher with 32 byte blocksize in counter mode.
The segment keys are generated by hashing the chunk-specific encryption key with the
counter and hash that again. This second step is required so that a segment can be se-
lectively disclosed in a 3rd party provable way yet without compromising the security of the
rest of the chunk.

The module provides input length preserving blockcipher encryption.

Definition 48 – Blockcipher.
1// /crypto

2

3// two -way (en/de)crypt function for segment
4define function crypt.segment segment
5with key
6at @i uint8
7as
8hash @key and @i // counter mode
9hash // extra hashing
10to @segment length // chop if needed
11xor @segment // xor key with segment
12

13// two -way (en/de)crypt function for arbitrary length
14define function crypt @input []byte

39

15with key
16return [@input length]byte
17as
18@segments = @input each segment size // iterate segments

of input
19go crypt.segment at @i++ with @key // concurrent crypt

on segments
20return wait for @segments // wait for results
21join // join (en/de)

crypted segments

Elliptic curve keys

Public key cryptography is the same as in Ethereum, it uses the secp256k1 elliptic curve.

Definition 49 – Elliptic curve key generation.
1// /crypto

2define type pubkey as [64] byte
3define type keypair
4privkey [32] byte
5pubkey
6

7define type address as [20] byte
8

9define function address pubkey
10return address
11as
12hash pubkey
13from 12
14

15define function generate
16?using entropy
17as
18@entropy = random segment if no @entropy
19http/get "signer/generate?entropy=" append @entropy
20as keypair

40

Asymmetric encryption

Asymmetric encryption implements ECIES based on the secp256k1 elliptic curve.

Definition 50 – Asymmetric encryption.
1// /crypto

2

3define function encrypt @input []byte
4for pubkey
5return [@input length]byte
6

7define function decrypt @input []byte
8with keypair
9return [@input length]byte

Signature

Crypto’s built-in signature module implements secp2156k1 elliptic curve based ECDSA. The
actual signing happens in the external signer running as a separate process (possibly within
the secure enclave). As customary in Ethereum, the signature is represented and serialised
using the r/s/v format,

Definition 51 – Signature.
1// /crypto

2

3define type signature
4r segment
5s segment
6v uint8
7signer private keypair
8

9

10define type doc
11preamble []byte
12context []byte
13asset segment
14

15define function sign @input []byte
16by keypair
17return signature
18as

41

19@doc = doc{ "swarm signature", context caller , @input }
20@sig = http/get "signer/sign?text=" append @doc
21append "&account=" append @keypair pubkey address
22as signature
23@sig signer = @keypair
24@sig
25

26define function recover signature
27with @input []byte
28from @caller []byte
29return pubkey
30as
31@doc = doc{ "swarm signature", @caller , @input } as bytes
32ethereum/call "ecrecover" with
33on context contracts "buzz"
34as pubkey

Diffie-Hellmann shared secret

The shared secret module implements elliptic curve based Diffie–Helmann shared secret
(ECDH) using the usual secp256k1 elliptic curve. The actual DH comes from the external
signer which is then hashed together with a salt.

Definition 52 – Shared secret.
1// /crypto

2

3define function shared.secret between keypair
4and pubkey
5using salt
6return [segment size]byte
7as
8http/get "signer/dh?pubkey=" append @pubkey append "&

account=" @keypair address
9hash with @salt

42

Erasure coding

Erasure coding interface provides wrappers extend/repair for the encoder/decoder that
work directly on a list of chunks.1

Assuming n out of m coding. extend takes a list of n data chunks and an argument for
the number of required parities. It returns the parity chunks only. repair takes a list of m
chunks (extended with all parities) and an argument for the number of parities p = m− n,
that designate the last p chunks as parity chunks. It returns the list of n repaired data chunks
only. The encoder does not know which parts are invalid, so missing or invalid chunks should
be set to nil in the argument to repair. If parity chunks are needed to be repaired, you call
repair @chunks with @parities; extend with @parities
Definition 53 – CRS erasure code interface definition.

1// /crypto/crs
2

3define function extend @chunks [] chunk
4with @parities uint
5return [@parities]chunk
6

7define function repair @chunks [] chunk
8with @parities uint
9return [@chunks length - @parities]chunk

Definition 54 – CRS erasure coding parameters.
1// /crypto/crs

2define strategy as "race"|"fallback"|"disabled"
3

4define type params
5parities uint
6strategy

2.1.2 State store

Definition 55 – State store.
1// /statestore

2

3define type key []byte

1Cauchy-Reed-Solomon erasure codes based on https://github.com/klauspost/reedsolomon.

43

https://github.com/klauspost/reedsolomon

4define type db []byte
5define type value []byte
6

7define function create db
8

9define function destroy db
10

11define function put value
12to db
13on key
14

15define function get key
16from db
17return value

2.1.3 Local context and configuration

Definition 56 – Context.
1// /context

2

3define type contract as "buzz"|"chequebook"|"postage"|""
4

5define type context
6contracts [contract]ethereum/address

2.2 Bzz address

2.2.1 Overlay address

Swarm’s overlay network uses 32-byte addresses. In order to help uniform utilisation of the
address space, these addresses must be derived using a hash function. A Swarm node must
be associated a Swarm base account or bzz account, which is an Ethereum account that the
node (operator) must possess the private key for. The node’s overlay address is derived the
public key of this account.

Definition 57 – Swarm overlay address of node A.

44

overlayAddress(A)
def
= Hash(ethAddress|bzzNetworkID) (2.1)

where

— Hash is the 256-bit Keccak SHA3 hash function
— ethAddress - the ethereum address (bytes, not hex) derived from the node’s base ac-

count public key: account
def
= PubKey(Kbzz

A)[12 : 32]), where
— PubKey is the uncompressed form of the public key of a keypair including its 04

(uncompressed) prefix.
— Kbzz

A refers to the node’s bzz account key pair
— bzzNetworkID is the bzz network id of the swarm network serialised as a little-endian

binary uint64.

In a way, deriving the node address from a public key means the overlay address space is
not freely available: to occupy an address you must possess the private key of the address
which other nodes need to verify. Such authentication is easy using a digital signature of a
shared consensual piece of text, see 2.2.

2.2.2 Underlay address

To enable peers to locate the a node on the network, the overlay address is paired with
an underlay address. The underlay address is a string representation of the node’s network
location on the underlying transport layer. It is used by nodes to dial other nodes to establish
keep-alive peer to peer connections.

2.2.3 BZZ address

Bzz address is functionally the pairing of overlay and underlay addresses. In order to ensure
that an overlay address is derived from an account the node possesses as well as verifiably
attest to an underlay address a node can be called on, bzz addresses are communicated in
the following transfer format:
Definition 59 – Swarm bzz address transfer format.

1// ID: /swarm/handshake /1.0.0/ bzzaddress
2

3syntax = "proto3";

45

4

5message BzzAddress {
6bytes Underlay = 1;
7Signature Sig = 2;
8bytes Overlay = 3;
9}

Here the signature is attesting to the association of an overlay and an underlay address for
a network.

Definition 60 – Signed underlay address of node A.

signedUnderlay(A)
def
= Sign(underlay |overlay |bzzNetworkID) (2.2)

of the underlay with overlay and bzz network ID appended as plaintext and hashes the
resulting public key together with the bzz network ID.

Definition 61 – Node addresses: overlay, underlay, bzz address.
1// /bzz

2

3define type overlay as [segment size]byte
4define type underlay []byte
5

6define function overlay.address of pubkey
7within @network uint64
8as
9hash @pubkey address and @network
10as overlay
11

12define function valid bzz.address
13within @network uint64
14as
15assert @bzz.address overlay == overlay.address of crypto/

recover from @bzz.address signature with @bzz.address
@underlay

16within @network
17

18define function bzz.address of overlay
19from underlay

46

20by @account ethereum/address
21as
22@sig = crypto/sign @underlay by @account
23bzz.address{ @overlay , @underlay , @sig }

In order to get the overlay address from the transfer format peer info, one recovers from
signature the peer’s base account public key using the plaintext that is constructed as per
60. From the public key, the overlay can be calculated as in 3. The overlay address thus
obtained needs to be checked against the one provided in the handshake.

Signing of the underlay enables preflight authentication of the underlay of a trusted but not
connected node.

Since underlays are meant to be volatile, we can assume and in fact expect multiple underlays
signed by the same node. However, these are meant to be temporally ordered. So one with
a newer timestamp invalidates the older one.

In order to make sure that the node connected through that underlay does indeed operate
the overlay address, its authentication must be obtained through the peer connection that
was initiated by dialing the underlay. The This protects against malicious impersonation of
a trusted overlay potentially.

2.3 Chunks, encryption and addressing

2.3.1 Content addressed chunks

First let us define some basic types, such as payload, span, segment. These fixed length byte
slices enables verbose expression of fundamental units like segment size or payload size.
Definition 62 – segment, payload, span, branches.

1// /chunk
2

3define type segment as [32] byte // unit for type definitions
4define type payload as [:4096] byte // variable length max 4

Kilobyte
5define type span as uint64 // little endian binary

marshalled
6

7define function branches

47

8as payload size / segment size

Now let’s turn to the definition of address, key and reference:

Definition 63 – Chunk reference.
1// /chunk

2

3define type address as [segment size]byte
4

5define type reference
6address // result of bmt hash
7key if context.encryption // decryption key optional (

context dependent)

Now, define chunk as a object with span and payload.

Definition 64 – Content addressed chunk.
1// /chunk

2

3define type chunk
4span // length of data span subsumed under node
5payload // max 4096 bytes
6

7define function address of chunk
8as
9@chunk payload bmt/hash with @chunk span
10

11define function create from payload
12?over span
13as
14@span = @payload length if no @span
15@chunk = chunk{ @span , @payload }
16return @chunk if no context encryption
17@key = encryption.key for @chunk
18@chunk encrypt with @key

48

Where length is the content of the length field and reference size is the sum of size of the
referencing hash value and that of the decryption key, which is currently 64, as we use 256-bit
hashes and 256-bit keys.

In order to remove the padding after decryption before returning the plaintext chunk.
Definition 65 – Span to payload length.

1// /chunk
2

3define function payload.length of span
4as
5while @span >= 4096
6@span = @span + 4095
7/ 4096
8* reference size
9return @span

Finally, we can define the public API of chunks for retrieval and storage.
Definition 66 – Chunk API retrieval.

1// /chunk
2

3define function retrieve reference
4has api GET on "chunk/<reference >"
5as
6retrieve @reference address as chunk
7(decrypt with @reference key if @reference key)

Definition 67 – Chunk API: storage.
1// /chunk

2

3

4define function store payload
5?over span
6has api POST on "chunk /(? span=)"
7from payload as body
8as
9@chunk = create from @payload over @span
10reference{ @chunk address , @chunk key }

49

2.3.2 Single owner chunk

Single owner chunks are the second type of chunk in swarm. They constitute the basis of
swarm feeds.
Definition 68 – Single owner chunks.

1// /soc
2

3// data structure for single owner chunk
4define type soc
5id [segment size]byte // id ’within ’ owner

namespace
6signature crypto/signature // owner attests to <content ,

id >
7chunk // content: embeds a content

chunk
8

9// constructor for single owner chunks
10define function create from chunk
11by @owner crypto/keypair
12on @id [segment size]byte
13as
14@sig = crypto/sign @id and @chunk address by @owner
15soc{ @id , @sig , @chunk }
16

17define function address soc
18as
19hash @soc id and @soc signature signer address

Definition 69 – Single owner chunk API: retrieval.
1// /soc

2

3define function retrieve @id [segment size]byte
4by @owner ethereum/address
5?with key
6has api GET on "soc/<owner >/<id >(?key=<key >)"
7as
8retrieve hash @id and @owner
9as soc
10chunk (decrypt with @key if @key)

50

Definition 70 – Single owner chunk API: storage.
1// /soc

2

3define function store payload
4on @id [segment size]byte
5by @owner ethereum/address
6?over span
7has api POST on "soc/<owner >/<id >?span=& encrypt=<encrypt >

"
8from <payload > as body
9as
10@span = @payload length if no @span
11@chunk = chunk{ @span , @payload }
12if context encryption then
13@key = encryption.key for @chunk
14@chunk encrypt= with @key
15@soc = create from @chunk on @id by private key of @owner
16reference{ @soc store address , @key }

2.3.3 Binary Merkle Tree Hash

The hashing method used to obtain the address of the default content addressed chunk is
called the binary Merkle tree hash, or BMT hash for short.

Calculating the BMT hash

The base segments of the binary tree are subsequences of the chunk content data. The size
of segments is 32 bytes, which is the digest size of the base hash used to construct the tree.
Given the Swarm hash tree used to represent files (see 2.5.1) assumes that intermediate
chunks package references to other chunks.

Obtaining the BMT hash of a sequence involves the following steps:

1. padding - If the content is shorter than the maximum chunk Size (4096 bytes), it is
padded with zeros up to chunk size. Note that this zero padding is only for hashing
and does not impact chunk data sizes.

2. chunk data layer - Calculate the base hash of pairs of segments in the padded chunk,
i.e., segment size (2 ∗ 32) units of data and concatenate the results.

51

3. building the tree - Repeat previous step on the result until the result is just one section.
4. calculate span - Calculate the span of the data, i.e., the size of the data that is subsumed

under the chunk represented by the unpadded data as a 64-bit little-endian integer
value (see 2.5.1).

5. integrity protection - Prepend the span to the root hash of the binary tree and calculate
the base hash of the data.

Definition 71 – BMT hash.
1// /bmt

2

3define function hash payload
4with span
5as
6@padded = @payload as [:chunk size]byte // use zero

padding
7// for BMT hashing only
8hash @span and root of @padded over chunk size
9

10define function root of @section []byte
11over @len uint
12as
13return hash @section // data level
14if @len == 2 * segment size
15@len /= 2 // recursive call
16@children = @section each @len go self over @len
17wait for @children
18join hash

Inclusion proofs

Having the segments align with the hashes packaged in these chunks one can extend the
notion of inclusion proofs to files. The BMT hash enables compact 3rd party verifiable
segment inclusion proofs.

2.3.4 Encryption

Symmetric encryption in Swarm is using a slightly modified version blockcipher in counter
mode.

The encryption seed for the chunk is derived from the master seed if given, otherwise just

52

generated randomly.

The reference to a single chunk (and the whole content) is the concatenation of the hash of
encrypted data and the decryption key (see 63). This means the encrypted Swarm reference
(64 bytes) will be longer than the unencrypted one (32 bytes). When a node syncs encrypted
chunks, it does not share the full references (or the decryption keys) with the other nodes in
any way. Therefore, other nodes will be unable to access the original data, or in fact, even
to detect whether a chunk is encrypted.

Definition 72 – Chunk encryption/decryption API.
1

2// generate key for a chunk
3define encryption.key for chunk
4?with @seed [segment.size]byte
5as
6return crypto/random key if no @seed // generate new
7hash @seed and @chunk address
8

9define function encrypt chunk
10with key
11as
12@segments = @chunk data pad to chunk size
13each segment size
14go crypt at @i++ with @key
15@span = chunk span crypt at branches with @seed
16@payload = wait for @segments
17join
18chunk{ @span , @payload }
19

20

21define function decrypt chunk
22with key
23as
24@span = @chunk span
25crypt at branches with @key
26@segments = chunk data to @span payload.length
27each segment size
28go crypt at @i++ with @key
29@payload = wait for @segments
30join
31chunk{ @span , @payload }

53

Encrypted Swarm chunks are not different from plaintext chunks and therefore no change is
needed on the P2P protocol level to accommodate them. The proposed encryption scheme
is end-to-end, meaning that encryption and decryption is done on endpoints, i.e., where the
http proxy layer runs. This has an important consequence that public gateways cannot be
used for encrypted content. On the other hand, the apiary modular design allows for client
side encryption on top of external APIs while proxying all other calls via the gateway.

2.4 Postage stamps

2.4.1 Witness type

There can be different implementations of postage stamps that differ in the structure and
semantics of the proof of payment. To allow for new cryptographic mechanisms to be used
as they are developed, the witnessType argument indicates the type of the witness used.

Witness type 0 stands for ECDSA witness, which is an ECDSA signature on the byte slice
resulting from the concatenation of 1) preamble constant 2) chunk hash 3) batch reference
4) valid until date.2 This is the bare minimum that postage stamp contracts and clients
must implement.3

Witness type 1 refers to the RSA witness, which is an RSA signature on the same 128 bytes
as above. The binary encoding of the RSA signature is of variable length, and is an Solidity
ABI encoded array of the RSA signature s.4

The RSA witness is specified so that blind stamping services can be implemented in a simple
fashion, in order to mitigate the privacy issues arising from the ability to link chunks signed
with the same private key. Even though blind ECDSA signatures also exist, their protocol
requires more rounds of communication, making the implementation of such a service more
complex, more error-prone and less performant.

The inclusion of the entire public key in each RSA witness rather than storing the public key
in contract state and just referencing it from the witness is justified by reducing the gas costs

2The binary encoding of the ECDSA signature is 65 bytes resulting from the concatenation of the r (32
bytes), s (32 bytes) and v (1 byte) parameters of the signature, in this order. The signature is calculated on
the secp256k1 elliptic curve, just like the signatures of Ethereum transactions.

3The ECDSA witness is the simplest and cheapest solution both in terms of gas consumed by the stamp
verification contract and in terms of computational resources used off chain. Also, it does not rely on crypto-
graphic assumptions in addition to those on which Ethereum critically relies, therefore as long as Ethereum
is considered cryptographically secure, no advance in cryptorgraphy can render this witness type insecure.
This is the justification for this witness type to be the only mandatory witness type to be implemented.

4as defined in PKCS #1, https://tools.ietf.org/html/rfc8017 and the RSA public key parameters
n (RSA modulus) and e (public exponent).

54

https://tools.ietf.org/html/rfc8017

of interactions with the contract as well as future-proofing the design in case contract state
rent is introduced in Ethereum. These considerations are more important than the brevity
of postage stamps, marginally reducing the bandwith costs of uploading and forwarding
stamped content.

Note that cryptographic advances can render RSA witnesses insecure without rendering
Ethereum insecure, therefore RSA witnesses can be phased out in future versions of the pro-
tocol, if the security of RSA signatures gets compromised. Note, furthermore, that such blind
signing services are not entirely trustless, through the damage they can incur is bounded.
Trustless blind stamping services based on ZK proofs are not feasible at this stage, as the
current algorithms are not sufficiently performant for the purpose, but given the rapid ad-
vances in the field, the development of suitable algorithms can be expected in the future, in
which case a corresponding witness type will have to be specified in a separate SWIP.

2.4.2 Contract Upgrades

In order to facilitate the upgrade of the contract either in case of a discovered vulnerability
or some feature extension (such as adding new witness types), it is recommended that the
part holding the funds with the database of payments and the part that verifies witnesses
are in separate contracts so that a backwards-compatible upgrade can be performed with
minimal disruption.

In order to avoid centralized control, it is also recommended that it is the witness-verifying
contract that is referenced in client configuration so that client operators can independently
decide for themselves when and whether to switch to a new contract, as they become avail-
able.

Nodes participating in the same postage system are configured to reference the same contract
on the same blockchain. This contract must conform to the following interface:

Definition 73 – Postage contract.

This accessor method returns true if the proof embodied by witness checks out for all other
arguments within the claimed validity period, i.e. when block.timestamp (the output of
TIMESTAMP EVM opcode) is between beginValidity (inclusive) and endValidity (exclusive).
Outside of the validity period, the return value is undefined.
Definition 74 – Postage stamp basic types: batchID, address, witness, stamp,

validity.
1// /postage

2

3define type batchid as [segment size]byte

55

4define type address as bzz/address
5define type witness as crypo/signature
6

7// postage stamp
8define type stamp
9batchid
10address
11witness
12

13define function valid stamp
14as
15// check validity on blockchain
16ethereum call "valid" using context contracts "postage"
17with @stamp

2.5 Files, manifests and data structures

2.5.1 Files and the Swarm hash

This table gives an overview of data sizes a chunk span represents, depending on the level
of recursion.

span
unencrypted encrypted

level chunks log2 of bytes standard chunks log2 of bytes standard

0 1 12 4KB 1 12 4KB
1 128 19 512KB 64 18 256KB
2 16,384 26 67MB 4,096 24 16MB
3 2,097,152 33 8.5GB 262,144 30 1.07GB
4 268.44M 40 1.1TB 16.78M 36 68.7GB
5 34,359.74M 47 140TB 1,073.74M 42 4.4TB

Table 2.1: Size of chunk spans

Calculating the Swarm Hash

Client-side custom redundancy is achieved by RS erasure coding; using it neccessitates some
RS parameters.

56

Definition 75 – File API: upload/storage; swarm hash.
1// /file

2

3define function encode @levels [] chunk stream
4for @level uint
5as
6@chunks = @levels at @level // read chunk stream
7@crs = context crs //
8@m = branches (- @crs parities if @crs)
9

10@parent = read @m from @chunks // read up to m chunks from
stream blocking

11(append crs/extend with @crs parities if @crs)
12each chunk/store // package children

reference
13join as chunk
14

15if @levels length == @level +1 then
16@levels append= stream {}
17go self @levels for @level +1
18

19write @parent to @levels at @level +1
20if no @chunks then
21close @levels at @level + 1
22else
23self @chunks for @level
24

25define function split @data byte stream
26as
27@level = chunk stream {}
28go @data each chunk size as chunk
29write to @chunks
30@level
31

32define function upload byte stream as @data
33has api POST on "file/" from @data as body
34as
35@levels append= @data split //
36go encode @levels for 0
37@top = @levels each wait for // wait for all levels to

close
38return @top at 0 // return root hash as

57

address

Definition 76 – File API: download/retrieval.
1// /file

2

3define function copy to @reader stream of byte{}
4from @chunks stream of []chunk
5using @buffers stream of [@buffer.size]stream of [branches]

chunk
6as
7@chunks = read @buffers if no @chunks
8@chunk = read @chunks
9if no @chunk
10write @chunks to @buffer
11self @reader using @buffers
12write @chunk data to @reader
13

14define function download reference
15?using @buffer.size uint64
16has api GET on "file/<reference >"
17as
18@reader = stream of byte{}
19@buffers = stream of [@buffer.size]stream of [branches]

chunk
20chunk/retrieve @reference // root chunk

retrieval
21go decode into @buffer down to 1 // traverse
22copy into @reader from @buffers
23

24define function decode chunk
25into @response chunk stream
26?down to @limit uint8
27as
28

29@crs = context crs
30@all = @m = branches
31if @crs then
32@m -= @crs parities
33if @crs strategy is not "race" then
34@all = @m
35

58

36@chunks = @chunk segments up to @all
37each go as reference retrieve
38wait for @m in @chunks
39

40if @crs then
41cancel @chunks
42@chunks = @chunks crs/repair with @crs parities
43

44if @chunk span < chunk size exp @limit + 1 then
45@chunks each into @reader
46

47

48@chunks each go self down to @limit

Definition 77 – File info.
1// /file

2

3define type info
4mode int64
5size int64
6modified time

2.5.2 Manifests

Manifests represent a mapping of strings to references. The primary purpose is to implement
document collections (websites) on swarm and enable URL-based addressing of content. This
section defines the data structures relevant for manifests as well as the algorithms for lookup
and update which implement the manifest API (see ??).

A manifest entry can be conceived of as metadata about a file pointed to and retrievable
by its reference (see 2.5.1). The metadata is quite diverse, ranging from information needed
for access control, file information similar to one given on file systems, information needed
for erasure coding (see ?? and 2.1.1), information for browser, i.e., response headers such as
content type (MIME info) and most importantly the reference to the file. Using manifests as
simple key-value store is exemplified by access control (see 2.6 and ?? for the specification).
Definition 78 – Manifest entry.

1// /manifest
2

59

3// manifest entry encodes attributes
4define type entry
5file/info // FS file/dir info
6access/params // access control params
7crs/params // erasure coding - CRS params
8reference // reference
9headers // http response headers
10

11define type headers
12content.type [segment size]byte

Definition 79 – Manifest data structure.
1// /manifest

2

3define type node
4entry *entry // reference to chunk serialised as

entry
5forks [<<256] fork // sparse array of max 256 fork
6

7// fork encodes a branch
8define type fork
9prefix segment // compaction
10node *node // reference to chunk serialised as node

Definition 80 – Manifest API: path lookup.
1// /manifest

2

3define function lookup @path []byte
4in *node
5has api GET on "/manifest/<@node:reference >/<@path >"
6as
7context access = @node entry access/params
8// manifest is a compacted trie
9@fork = @node forks at head @path
10// if @path empty , the paths matched return the entry
11if no @path then
12return @node entry
13

14if @fork prefix is prefix of @path then // including ==
15return self @path from @fork prefix length

60

16in @fork node
17fail with "not found"

Definition 81 – Manifest API: update.
1// /manifest

2

3define function add *entry
4to *node
5on @path []byte
6has api PUT on "/manifest/<@node >"
7

8as
9// if called on nil call on zero value
10@node = node{} if no @node
11

12// if empty path then change entry field of node
13if no @path then
14@node entry = @entry
15return store @node
16

17// lookup the fork based on the first byte of path
18@fork = @node forks at head @path
19// if no fork yet , add the singleton node
20if no @fork then
21@node forks at head @path =
22fork{@path , store node{@entry }}
23return store @node
24

25@common = prefix of @path and @fork prefix // common cannot
be empty

26@rest = @fork prefix from @common length
27@newnode = node{}
28@newnode forks at head @rest = fork{@rest , @fork node}
29@midnode = self @entry to @newnode on @path from @common

length
30@node forks at head @path = fork{ @common , @midnode }
31@node store

Definition 82 – Manifest API: remove.
1// /manifest

61

2

3define function remove @path []byte
4from *node
5has api DELETE on "/manifest/<@node >/<@path >"
6as
7// if called on nil call on zero value
8return node{} if no @node
9

10// if empty path then change entry field of node
11if no @path then
12return nil if @node forks length == 0
13@node entry = nil //entry exists
14return store @node
15

16// lookup the fork based on the first byte of path
17@fork = @node forks at head @path
18// if no fork yet , add the singleton node
19return @node if no @fork
20

21@common = prefix of @path and @fork prefix // common cannot
be empty

22return @node if @common and @fork prefix have different
length // path not found

23

24@rest = @fork prefix from @common length
25@newnode = self @rest from @fork node
26if no @newnode then // deleted item was terminal

node , delete fork
27@node forks at head @res = nil
28else if @newnode forks length == 1 then // compact non -

forking nodes
29@singleton = @newnode forks first
30@newprefix = @common append @singleton prefix
31@node forks at head @path =
32fork{ @newprefix , @singleton node }
33else
34@node fork at head @path node = @newnode
35

36@node store

Definition 83 – Manifest API: merge.

62

1// /manifest
2

3define function merge @new *node
4to @old *node
5has api POST on "/manifest/<@old:reference >/<@new:reference >"
6as
7// if called on nil call on zero value
8return @new if no @old
9return @old if no @new
10@node = node{ @new or @old }
11@new forks pos or @old forks pos
12each bit @pos go
13@fork = merge.fork @new forks at @pos
14to @old forks at @pos
15@node forks at @fork prefix head = @fork
16@node store
17

18define function merge.fork @new fork
19to @old fork
20as
21@common = prefix of @new prefix and @old prefix
22@restnew = @new prefix from @common length
23@restold = @old prefix from @common length
24if no @restnew and no @restold then
25return fork{@common , merge.node @new reference to @old

reference}
26@node = add @new reference to nil on @restnew
27add to @old reference @restold
28fork{ @common , @node }

2.5.3 Resolver

Definition 84 – Resolver.
1// /resolver

2

3define type resolver
4api url
5address ethereum/address
6tlds [] string
7

63

8define function resolve @host []byte through @resolver
9as
10@tld = @host split on ’.’’ last @resolver = @resolvers

any tlds any == @tld
11

12ethereum/call "getContentHash" of @host using @resolver api
at @resolver address

13as address

2.5.4 Pinning

Definition 85 – Pinning.
1// /pin

2

3define type pin
4reference
5chunks uint64
6

7define function list
8return []pin
9has api GET "/pin/"
10

11define function view reference
12return uint64
13has api GET "/pin/<reference >"
14

15define function pin reference
16return uint64
17has api PUT "/pin/<reference >"
18

19define function pin reference
20return uint64
21has api DELETE "/pin/<reference >"

2.5.5 Tags

64

Definition 86 – Tags.
1// /tag

2

3define type tag
4id [segment size]byte
5reference // the current root
6complete bool // if local upload finished
7total uint64 // number of chunks expected
8split uint64 // number of chunks split
9stored uint64 // number of chunks stored locally
10seen uint64 // number of chunks already in db
11sent uint64 // number of chunks sent with push -sync
12synced uint64 // number of chunks synced
13

14

15define function list
16return []tag
17has api GET "/tag/"
18

19define function view reference
20return uint64
21has api GET "/tag/<reference >"
22

23define function add reference
24return uint64
25has api POST "/tag/"
26

27define function remove reference
28return uint64
29has api DELETE "/tag/<reference >"

2.5.6 Storage

Definition 87 – Public storage API.
1// /bzz

2

3define function upload @data stream of byte
4has api POST on "bzz:/<host >/<path >" from @data as body
5as
6@root = resolver/resolve @host

65

7@manifest = access/unlock @root
8@entry = file/upload @data
9@reference = chunk/store @entry as []byte
10manifest/add @reference to @manifest on @path
11

12

13define function download @path []byte from @host []byte
14has api POST on "bzz:/<host >/<path >" from @data as body
15as
16@root = resolver/resolve @host
17@manifest = access/unlock @root
18@entry = manifest/lookup @path in @manifest
19file/download @entry reference

2.6 Access Control

Definition 88 – Access control: auth, hint, parameters, root access manifest.
1// /access

2

3define type auth as "pass"|"pk"
4define type hint as [segment size]byte
5

6// access control parameters
7define type params
8auth // serialises uint8
9publisher crypto/pubkey // 65 byte
10salt // salt for scrypt/dh
11hint // hint to link identity
12act *node // reference to act manifest

root
13kdf // params for scrypt
14}
15

16// root access manifest
17define type root
18params
19reference

66

Definition 89 – Session key and auth with credentials.
1// /access

2

3define function session.key.pass from hint
4with salt
5using kdf
6as
7crypto/scrypt from input/password using @hint
8with @salt using @kdf
9

10define function session.key.pk from hint
11with crypto/pubkey
12using salt
13as
14crypto/shared.secret between
15input/select key by @hint
16and @pubkey
17hash with @salt
18

19define function session.key
20using params
21as
22if @params auth == "pass" then
23return session.key.pass from @params hint
24with @params salt using @params kdf
25

26session.key.pk from @params hint
27with @params publisher using @params salt

Definition 90 – Access key.
1// /access

2define function access.key
3using params
4as
5@key = session.key using @params
6return @key if no @params act
7act.lookup @key in @params act
8

9define function act.lookup key
10in @act *node
11as

67

12manifest/lookup hash @key and 0
13in @act
14xor hash @key and 1

Definition 91 – Access control API: lock/unlock.
1// /access

2

3// control
4define function lock reference
5using params
6has api POST on "/access/<address >"
7with @params as body
8as
9@key = hash @reference address and @key
10@encrypted = @reference as bytes
11crypto/crypt with @key
12root{ @params , @encrypted }
13store
14

15

16define function unlock address
17has api GET on "access/<address >"
18as
19@root = retrieve @address
20try as root otherwise return @address
21@key = access.key using @root params
22@root encrypted crypto/crypt with @key
23as *node

Definition 92 – ACT manipulation API: add/remove.
1// /access

2

3define type act as manifest/node
4

5define function add @keys [] crypto/pubkey
6to *root
7has api PUT on "/access/<root >/"
8with @keys as body
9as
10// get params from the root access structure

68

11@params = retrieve @root as root params
12@access.key = access.key using @params
13@keys each @key
14@session.key = session.key using @params
15manifest/add @access.key xor hash @session.key with 1
16to @act on hash @session.key with 0
17

18

19define function remove @keys [] crypto/pubkey
20from *root
21has api DELETE on "/access/<root >"
22with @keys as body
23as
24// get params from the root access structure
25@params = retrieve @root as root params
26@keys each @key
27@session.key = session.key using @params
28manifest/remove hash @session.key with 0
29from @params act

2.7 PSS

2.7.1 PSS message

2.7.2 Direct pss message with trojan chunk

Pss has two fundamental types, a message and a trojan chunk structure which wraps the
encrypted serialised message and contains a nonce that is mined to make the resulting chunk’s
content address (BMT hash) to match the targets.
Definition 93 – Basic types: topic, targets, recipient, message and trojan.

1// /pss
2

3

4define type topic as [segment size]byte //
obfuscated topic matcher

5define type targets as [][] byte // overlay prefixes
6define type recipient as crypto/pubkey
7

69

8// pss message
9define type message
10seal segment
11payload [!:4030] byte // varlength padded to 4030B
12

13// trojan chunk
14// the nonce
15define type trojan
16nonce segment // the nonce to mine
17key pubkey // compressed format
18message [4064] byte // encrypted msg

The message is encoded in a way that allows integrity checking and at the same time obfus-
cates the topic. The operation to package the payload with a topic is called sealing
Definition 94 – Sealing/unsealing the message.

1// /pss
2

3define function seal @payload []byte
4with topic
5as
6@seal = hash @payload and @topic // obfuscate topic
7xor @topic
8return message{ @seal , @payload }
9

10define function unseal message
11with topic
12as
13@seal = hash @message payload and @topic
14if @topic == @seal xor @message seal then // check
15return @payload
16return nil

Functions wrap/unwrap transform between message and trojan chunk. wrap takes an op-
tional recipient public key to asymmetrically encrypt the message. The targets are a list of
overlay address prefixes derived from overlay addresses of recipients, with length specified
to guarantee that a chunk matching it will end up with the recipient solely as a result if
push-syncing.

70

Definition 95 – Wrapping/unwrapping.
1// /pss

2

3define function wrap message
4for recipient
5to targets
6as
7@msg = @message
8(crypto/encrypt for @recipient if @recipient)
9

10@nonce = crypto/mine @n such that
11@targets any is prefix of
12trojan{@n, @msg} as chunk address
13trojan{@nonce , @msg} as chunk
14

15define function unwrap chunk
16for recipient
17as
18@chunk bytes
19(crypto/decrypt for @recipient if @recipient)
20as message

When a chunk arrives at the node, pss/deliver is called as a hook by the storage component.
First the message is unwrapped using the recipient private key and unsealed with all the
topics API clients subscribed to. If the unsealing is successful, message integrity as well as
topic matching is proven so the payload is written into the stream registered for the topic in
question.
Definition 96 – Incoming message handling.

1// /pss
2

3// mailbox is a handler type , expects payload
4// sent sealed with the topic to be delivered via the stream
5define type mailbox
6topic
7deliveries stream of []byte
8

9define context mailboxes as [] mailbox
10

11define function deliver chunk
12@msg = @chunk unwrap for context recipient

71

13mailboxes each @mailbox
14@payload = unseal @msg with @mailbox topic
15if @payload then
16write @msg payload
17to @mailbox deliveries

Definition 97 – pss API: send.
1// /pss

2

3define function send @payload []byte
4about topic
5for recipient
6?to targets
7has api POST on "/pss/<recipient >/<topic >(? targets=<targets >)"
8with @payload as body
9as
10targets = lookup.targets for @recipient if no @targets
11context tag = tag/tag{}
12seal @payload with @topic // seal with topic
13wrap for @recipient // encrypt if given

recipient
14to @targets // mine nonce and returns

trojan chunk
15store // to be sent by push -sync
16return tag // tag to monitor status

Definition 98 – pss API: receive.
1// /pss

2

3define function receive about topic
4on uint64 @channel
5has api POST on "/pss/subscribe/<topic >(?on=<channel >)"
6as
7@stream = open @channel
8context mailboxes append= mailbox{ @topic , @stream }
9

10define function cancel topic
11on @channel uint64
12has api DELETE on "/pss/subscribe/<topic >(?on=<channel >)"
13as

72

14context mailboxes any ch

2.7.3 Envelopes

Definition 99 – Envelope.
1// /pss

2

3define type envelope
4id [segment size]byte
5sig crypto/signature
6ps postage/stamp

2.7.4 Update notifications

2.7.5 Chunk recovery

Definition 100 – Targeted delivery request.
1// /targeted.delivery

2

3define type envelope
4id segment
5signature crypto/signature
6

7

8define function wrap address
9?by @key crypto
10to @targets [] target
11as
12@key = crypto/random if no @key
13@n = crypto/mine @n such that
14@targets any is prefix of
15hash @n and @key account
16@sig = crypto/sign hash @n and @address
17by @key
18envelope{ @n , @sig }

73

Definition 101 – Prod missing chunk notification with recovery request.
c

1// /recovery
2

3define type request
4address
5envelope
6

7define function request address
8with @response bool
9to @targets
10as
11@request = request{ @address }
12if @response then
13@request envelope =
14targeted.delivery/wrap @address by @key to @targets
15pss/send @request bytes about "RECOVERY" to @targets

74

Part I

Appendix

75

Appendix A

Density-based size estimation

Nodes in Swarm must utilise their full reserve capacity: nodes will potentially further repli-
cate chunks in case they have unused reserve capacity beyond storing their share necessary
for a system-wide level of redundancy required. To incentivise this, participating in the
redistribution game involves a check called proof of resources which is supposed to verify
the size of reserve from which the reserve samples are generated. The insight here is that
the sample is the lowest range of a uniformly random variate over the entire 256-bit address
space. Intuitively, the higher the original volume of the sampled set, the denser it is, the
lower the expected maximum value in the sample. Conversely, a constraint on the maximum
value of the last element in the sample practically puts a minimum cardinality requirement
on the sampled set using a solution called density based set size estimation.

We are given n independent, uniformly distributed values between 0 and 1.1 Let the value
of the kth smallest of these be xk (so the smallest of the n values is x1, the second smallest is
x2, and so on, up to xn). What is the distribution of xk, given n? And what is the threshold
value u such that for any given probability α, the chance of obtaining an xk lower than u is
α?

Note that the distance between any two adjacent values out of n independent uniform variates
follows an exponential distribution, as long as n is sufficiently large.2 The rate parameter
of this exponential distribution is n+ 1, where n is increased by one to account for the fact

1Because we work with densities, the actual integer range is not relevant and results obtained for the unit
interval can simply be rescaled to the Swarm use case by multiplying with 2256.

2This follows from the fact that n independent uniform variates can be thought of as realizing a Poisson
process, whereby the timing of events is random, and it is known that the nearest-neighbour distribution
(i.e., waiting time between two consecutive events) is then exponentially distributed.

77

that the expected gap between adjacent values is 1/(n+ 1).3

We are after the distribution of the kth value, 4 xk, which then can be thought of as arising
from the sum of k independent exponential variables, each with a rate parameter of n + 1.
This is known to result in an Erlang distribution with shape parameter k and rate parameter
n+ 1. Using X(λ) to denote the exponential distribution with rate λ and E(k, λ) to denote
the Erlang distribution with shape k and rate λ:

k∑
i=1

Xi(n+ 1) = E(k, n+ 1), (A.1)

where the subscript i in Xi(n + 1) distinguishes between independent exponentially dis-
tributed random variables. The probability density function E(x, k, n + 1) of the Erlang
distribution itself is given by

E(x, k, n+ 1) =
(n+ 1)kxk−1e−(n+1)x

(k − 1)!
. (A.2)

This distribution contains the answer to the first question: what is the distribution of the
kth smallest value out of n independent uniform variates between 0 and 1? For example, if
k = 16 and n is either 500, 750, or 1000, we get the distributions shown in Figure A.1.

We can now answer the second question: given n and a confidence level α, what is the
threshold value u for xk such that the probability that xk < u is equal to α? That is, we
wish to know the value x = u at which the probability distribution has encompassed a given
area of α (see figure A.2).

The area under the curve of the Erlang distribution is given by its cumulative distribution
function P (x, k, n+ 1), which is known to be

P (x, k, n+ 1) =

∫ x

0

E(y, k, n+ 1) dy =
1

(k − 1)!

∫ (n+1)x

0

tk−1e−t dt. (A.3)

The latter expression is sometimes written as γ̃(k, (n+ 1)x), where

γ̃(k, x) =
1

Γ(k)

∫ x

0

tk−1e−t dt (A.4)

3For n = 2, the mean outcome is x1 = 1/3 and x2 = 2/3; for n = 3, it is x1 = 1/4, x2 = 2/4, x3 = 3/4;
and so on: for arbitrary n, xi = i/(n + 1), with the gap between adjacent values in this ideal case always
being 1/(n+ 1).

4An alternative approach using order statistic expresses xk via a beta distribution. It is very difficult
to prove that the Beta distribution’s quantile function is a strictly decreasing function of n, which is a key
piece of the argument presented here. Although this method is exact even for small n, in our case, n always
a very large number, therefore we adopted the other method.

78

0

25

50

75

100

0.00 0.02 0.04 0.06
x

de
ns

it
y

n

500

750

1000

Figure A.1: Probability density function E(x, k, n+ 1) of the Erlang distribution, with k = 16 and
n either 500, 750, or 1000.

0

10

20

30

40

50

0 u = 0.02 0.04 0.06
x

de
ns

it
y

Figure A.2: The distribution of x16, i.e., the 16th smallest value from among n = 500 independently
and uniformly drawn variates between 0 and 1. The area under the curve is shaded up to 5% of its
area. The point at which the shading stops is therefore the value u for which there is only a 5% chance
of getting an even smaller x16.

is the regularized lower incomplete gamma function. We therefore want to solve the equation

α =

∫ u

0

E(y, k, n+ 1) dy = P (u, k, n+ 1) (A.5)

79

for u.

Inverting this expression in u (since the cumulative distribution function increases mono-
tonically in u, the inverse exists) leads to the quantile function Q(α, k, n+ 1) of the Erlang
distribution: u = Q(α, k, n+ 1). The quantile function is known to be expressible as

Q(α, k, n+ 1) =
γ̃−1(k, x)

n+ 1
, (A.6)

where γ̃−1(k, x) is the inverse regularized lower incomplete gamma function. Its particular
form is of no interest to us, except for two properties. First, it is positive for all x.5 Second,
it is independent of n. Instead, the entire dependence of Q(α, k, n+ 1) on n is given by the
n+ 1 term in the denominator of Equation A.6. From this, we conclude that Q(α, k, n+ 1)
is a strictly decreasing function of n.

These two points lead to an important consequence. Say we compute the threshold u for
a given α and n in order to have an upper bound on a lower quantile. Now, if we were
to decrease n but hold all other things equal, the threshold will always get higher than
what it was before. The threshold obtained for higher values of n may therefore serve as a
conservative estimate of the threshold for lower values: if u is a threshold such that the kth
smallest out of n uniform variates is only smaller than u in α of cases, then for any amount
m < n, the chance of the kth variate conforming to the same constraint (i.e., xk < u) is now
even smaller than α.

Conversely, if we were to constrain xk so that the probability of not getting a value smaller
than u is lower than β (minimising a higher quantile), we find that the constraint remains
true as n is increased.

Armed with these results, let us see how Equation A.6 can be used for the estimation
procedure. There are two problems to tackle, ultimately relating to the two aspects of a
test’s accuracy. First, we want to catch inadequate storers slacking on volume. In other
words, we want to constrain the xk values so that we can safely say that any attacker with a
stored volume below an acceptable size n has a probability less than α to obtain such a small
xk by pure chance. Construing the condition for xk < u as a test to filter honest players
(just based on the size of their reserve), 1−α expresses the sensitivity of the test. From the
previous argument on the monotonic dependence of α on n, it is safe to use a condition that
requires xk to stay below a threshold obtained for n.

Second, we want to avoid situations when honest participants end up not satisfying the
above constraint even though they sampled from a set larger than the required minimum.
Given a target volume m > n, the error rate of false negatives is guaranteed to be less than

5This stands to reason: the quantile function of a distribution on x ∈ [0, ∞) is itself between 0 and ∞,
and γ̃−1(k, x) is just the quantile function of the Erlang distribution times the positive constant n+ 1.

80

β obtained from the quantile function with parameters m, k, and u. The quantity 1 − β is
the specificity or precision of the test.

Figure A.3 illustrates this idea, for two different distributions in both the lower- and upper-
end estimation. What we want is to choose u to simultaneously make sure that dishonest
players do not sneak through the system and also that honest players do not get excluded
too often. This translates to make both α and β as small as possible.

scenario 1
scenario 2

0 u = 0.02 0.04 0.06

0

50

100

0

50

100

x

de
ns

it
y

n

500

1000

400

1300

Figure A.3: Recall and precision of proof of reserve size validation: Any chosen u will lead to
different α and β values, depending on n. Here u is fixed at 0.02. The top panel shows distributions
for x ≡ x16 with n = 500 (blue) and n = 1000 (yellow). The area left under the blue curve to the
left of u is equal to α (blue shade); the area under the yellow curve right of u is equal to β (yellow
shade). If the curves overlap considerably (top), it is impossible to choose an u such that α and β are
simultaneously small.

One way to try and find the best compromise is by minimising α + β (the accuracy of the
test) and pick the u value at the optimum to be used in the proof of resources test. To
this end, one can vary α between 0 and 1 and, for each of its values, solve the equation
α = Q(1− β, k, n+1) (where n is the larger value, used for estimating β). This way, we get
a β value for every possible α. Then, we can find the combination which minimises α + β,
and determine the value of u that leads to this optimum. As illustrated in figure A.4, larger
values of k yield a trade-off curve along which better accuracies can be achieved.

81

u = 5.54589e−06
u = 1.10923e−05
u = 2.21962e−05

0.00

0.25

0.50

0.75

0.00 0.05 0.10 0.15 0.20 0.25
α

β
k

8

16

32

Figure A.4: Optimal accuracy of reserve size probe By increasing k, one can get better optima for
minimising α + β. Here n = 106 for estimating α and 2 · 106 for estimating β, and k is either 8, 16,
or 32 (colors). The values of u associated with the optima are also shown.

Table A.1 summarizes the important numerical results in Figure A.4.6

k α β u u · 2256

8 0.196216 0.1373622 5.54589 · 10−6 6.421705 · 1071
16 0.097612 0.0716570 1.10923 · 10−5 1.284401 · 1072
32 0.029386 0.0219151 2.21962 · 10−5 2.570140 · 1072

Table A.1: Proof of density parameter calibration. Assuming n = 106 and m = 2 · 106 to calculate
recall and precision error rates α and β, respectively, the cutoff value for the proof is calibrated by
optimizing on acccuracy using sample sizes 8, 16, 32.

6Since the hash function used to generate random variates does so in the range [0, 2256 − 1] instead of
[0, 1], the calculated thresholds are scaled with 2256 to show where they would fall in their actual range.

82

Appendix B

Source of randomness

As the neighbourhood selection anchor will directly affect which neighbourhood wins the pot,
it is prudent to derive the randomness from a source of entropy that cannot be manipulated.
A common solution to obtain randomness is to have independent parties committing to
a random nonce with a stake. The random seed for a round is defined as the xor of all
revealed nonces. Given the nonces are independent sources fixed in the commit, no individual
participant has the ability to skew randomness by selecting a particular nonce. Thanks to
the commutativity of xor, the order of reveals is also irrelevant. However, if the reveal
transactions are sequential, committers compete at holding out since the last one to reveal
can effectively choose the resulting seed to be either including its committed nonce (if they
do reveal) or not (if they do not reveal). The threat to slash the stake of non-revealers serves
to eliminate this degree of freedom from last revealers and thus renders this scheme a secure
random oracle assuming there is at least one honest (non-colluding) party.1

Now note that the redistribution scheme already has a commit reveal scheme as well as
stake slashed for non-revealers, so a potential random oracle is already part of the proposed
scheme. Incidentally, the beginning of the claim phase is when new randomness is needed to
select the truth and a winner. Importantly, these random values are only needed if there is a
claim which implies that there were some commits and reveals to choose from. Or conversely,
if there are no reveals in the round,2 the random seed is undefined but is also not needed for
the claim.

The random seed that transpires at the beginning of the claim phase can serve as the reserve

1If the stake is higher than the reward pot, one cannot afford being slashed with even just one commit
without a loss. If this cannot be guaranteed, slashing of the stake is not an effective deterrent.

2If saboteurs get slashed or frozen in the claim transaction, if there is no claim, the committers get away
without being punished. This can be remedied if the staking contract keeps a flag on each overlay (set when
commits, unsets when reveals in the same round) and the check and punishment happens as a result of a
commit call in the case the flag is found set.

83

sample salt (nonce input to modified hash used in the sampling) with which the nodes in
the selected neighbourhood can start calculating their reserve sample.

The neighbourhood for the next round is selected by the neighbourhood selection anchor,
which is, similarly to the truth and winner selection nonces, deterministically derived from
the same random seed. Unlike the nonces used to select from the reveals, neighbourhood
selection should be well defined for the following round even if a round is skipped, i.e., when
there is no reveals. To cover this case skipped rounds keep the random seed of the previous
round. However, in order to rotate selected neighbourhoods through skipped rounds, we
derive the neighbourhood selection anchor from the seed by factoring in the number of game
rounds passed since the last reveal.3

In order to provide protection against the case when each committer in the neighbourhood
is colluding, and can afford losing stake we need to make sure that the entropy is still high
otherwise the nodes can influence the neighbourhood selection nonce and reselect themselves
or a fixed colluding neighbourhood (or increase the chances of reselection).

Definition 103 – Random seed for the round.
Define the random seed of the round as the xor of all obfuscation keys sent as part of the
reveal transaction data during the entire reveal period:

R : Γ 7→ Nonce (B.1)

R(γ)
def
=

R(Prev(γ)) if |Reveals(γ)| = 0∨
–r∈Reveals(γ)

nonce(r) otherwise (B.2)

Lemma 104 – Round seed is a secure random oracle.
The nonce produced by xoring the revealed obfuscation keys is a correct source of entropy.

Proof. Assuming n independent parties committing, choosing any particular nonce will leave
the outcome fully random.

3Otherwise a selected neighbourhood could collude maliciously not to commit/reveal and have the pot
roll over to the following round. By simply holding out for a number of redistribution rounds, they could
unfairly multiply their reward when they eventually claim the pot.

84

Appendix C

Parameter constants

Table C.1 lists the constants used by Swarm with their type, default value and description.

constant name type value description

BZZ NETWORK ID uint64 0 ID of the swarm network
PHASE LENGTH uint64 38 length of commit phase of the redistribu-

tion game round in number of blocks
ROUND LENGTH uint64 152 length of one redistribution game round

in number of blocks, fixed at 4 times the
PHASE LENGTH

NODE RESERVE DEPTH uint8 23 size requirement for client reserve capac-
ity given in base 2 log number of chunks

SAMPLE DEPTH uint8 4 base 2 log number of chunks in sample
MAX SAMPLE VALUE uint256 1.2844 · 1072 maximum value for last transformed ad-

dress in reserve sample, i.e., < 1% chance
the sampled set size is below a fourth of
the prescribed node reserve size.

MINIMUM STAKE uint256 10 minimum stake amount in BZZ to be re-
defined as minimum stake given in stor-
age rent units

MIN STAKE AGE uint256 228 minimum number of blocks stakers need
to wait after update or creation for the
stake to be useable. Defaults to one and
a half rounds to prevent opportunistic
manipulation of stake after a neighbour-
hood is selected.

85

PRICE 2X ROUNDS uint64 64 number of rounds it takes for the price
to double in the presence of a consistent
lowest degree signal of undersupply.

NHOOD PEER COUNT uint8 4 minimum number of nodes required to
form a fully connected neighbourhood.

Table C.1: Parameter constants

86

	Formal specification
	DISC basics
	Notation
	Sequences
	Custom types
	XOR distance and proximity order
	Binary Merkle tree hash
	Chunks
	Single Owner Chunks
	Segment inclusion proofs
	Postage stamps
	Ordering and sampling

	Redistribution game
	Transactions and on-chain registers
	Random nonces
	Winner selection and claim validation
	Proofs of reserve

	Data types and algorithms
	Built-in primitives
	Crypto
	State store
	Local context and configuration

	Bzz address
	Overlay address
	Underlay address
	BZZ address

	Chunks, encryption and addressing
	Content addressed chunks
	Single owner chunk
	Binary Merkle Tree Hash
	Encryption

	Postage stamps
	Witness type
	Contract Upgrades

	Files, manifests and data structures
	Files and the Swarm hash
	Manifests
	Resolver
	Pinning
	Tags
	Storage

	Access Control
	PSS
	PSS message
	Direct pss message with trojan chunk
	Envelopes
	Update notifications
	Chunk recovery

	I Appendix
	Density-based size estimation
	Source of randomness
	Parameter constants

