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Chapter 1

Formal specification

1.1 DISC basics

1.1.1 Notation

— roman — predicates standing for blockchain verifiable properties
— SMALLCAPS— field of a composite, tuple member function

— II” — proof constructor function

— VP — validator function

— TT_FONT — constant parameter (see appendix ?7)

— wint[d] — left closed, right open integer range [0, 2¢)

1.1.2 Sequences

Definition 1 — sequences .
Define 7{n}, the non-polymorphic sequences of length n (non-negative) over any type 7 as
an indexing function:

Oon—1—7 ifn>0
+ < U m{n} (1.2)
nezt

™ = {@}Ur+ (1.3)

T{n} = {Q— =0 (1.1)
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Length function len:

len(s) : T — uint6) (1.5)
len(s) {SL i ‘Z Zin} (1.6)
The positional index ’at’ function:
[0 : 7%— xwint6f =7 (1.7)
s[1 : 0O/len(s)—1—r7 (1.8)
slil = 5(i) (1.9)
Define the concatenation operator &’
(x®y) : 0,len(x)+len(y) —1— 71 (1.10)
eyt = {;EZZ]— len(x)] loftl(r)lefwzi;e o (1.11)
Define slices (subsequences) with the range operator ":”:
(slo:o+1]1) : 0 l—1—7 (1.12)
(slozo+ 1)1 = slo+i] (1.13)
where
0,1l > 0N (1.14)
len(x) > o0+1 (1.15)
Let us also define empty, prefix and suffix slices:
slr:z] = @ (1.16)
sl:x] = s[0:z] (1.17)
slz:]1 = slz:len(s)] (1.18)

As a special case byte slices are defined as sequences of 8-bit integers.

Definition 2 — segmentation.

Define segment as an at most 32 long byte slice, and define segmentation of a slice of bytes as
the partitioning of the slice into consecutive segments. Define segment count as the number
of segments that cover a byte slice:

SegCnt  :  bytex — uint64 (1.19)
def . l - 1
SegCnt(s) = int (%) +1 (1.20)

14



Now we can define the segment indexing function [[]] which maps the byte slice s and an
index 7 to the i-the segment in the segmentation of s:

(011 :  obytex — wint64 — Segment (1.21)
s[[11 : 0,SegCnt(s) —1 — Segment (1.22)
¢ 2-4: if 1 = -1
sty el % = SegCnt (1.23)
s[32-7:32-(i+1)] otherwise

1.1.3 Custom types

Definition 3 — Swarm overlay address of node n.

A Swarm node is associated with an Ethereum account that the node operator must possess
the private key for, called bzz account (K%#). The node’s overlay address is derived as the
hash of the binary serialisation of the Ethereum address of this account with the Swarm
network ID and a minable nonce appended.

overlay(n) = H(ace ®id & v) (1.24)
where
ETH ADDRESS acc = Account(K,,) (1.25)
NETWORK ID id = BZZ_NETWORK_ID (1.26)
OVERLAY NONCE v € Nonce (1.27)

Definition 4 — DISC custom types .
Let us define the DISC specific custom types used in the formalisation.

Segment = byte{32} = wint256
32-long slice of raw bytes
in numerical context cast as BigEndian encoded 256-bit unsigned integer
Address = Segment
swarm chunk address, swarm peers’ overlay address
Nonce = Segment
deterministically random Segment
Account = byte{20}
Ethereum address deriveed from EC keypair K
Account(K) = H(PubKey(K))[12:32]
Nodes = Segment
swarm client node (peer)

15



Sig = byte{65}

(r,s,v) representation of an EC signature (3243241 bytes)
Timestamp = uintb4

64-bit unsigned integer for unix time, nanosecond resolution

big endian binary serialisation.
H : bytex — Segment

the 256-bit Keccak SHA3 hash function, the base hash used in swarm.

1.1.4 XOR distance and proximity order

Definition 5 — XOR distance ().

Consider the set of bit sequences with fixed length d as points in a space. Define a distance
metric y such that the distance between two such sequences is the numerical value of their
bitwise XOR (") using big endian (= most significant bit first) encoding.

X wint[d] X wint[d] — wint|d] (1.28)
x(z,y) = Uint'(BEY(z)"BE%(z))) (1.29)

Given the fixed length d > 0, there is a maximum distance (2¢ — 1 = x(0{d}, 1{d})) in this
space, and thus we can define the notion of normalised distance:

X o wnt[d] x wint[d] — Q[0,1] (1.30)
X(z,y) & ’;(f_yl) (1.31)

Definition 6 — Proximity order (PO ).
Proximity order (PO) is a discrete logarithmic scaling of proximity.

PO wuint[d] x uint[d] — 0,d (1.32)
POy) = {Zlnt(logQ(meimity(a:, v))) ofha;rjviZe (1.33)
where proximity is the inverse of normalised distance:
Prozimity :  wint|d] X wint[d] — wint[d] (1.34)
. 1
Prozimity(z,y) = ) (1.35)

16



Given two points = and y, the order of their proximity PO(z,y) equals the number of initial
bits shared by their respective most significant bit first binary representations. In practice,
with d = 256, uint[d] = Segment, so PO also applies to a pair of slices of 32 bytes.

1.1.5 Binary Merkle tree hash

BMT Chunk Hash *>

8 byte span *> <; BMT Root
7 7 (%) [F]

/ \ B : :
R
f |

32 byte seg- zero padding if
ments. needed to fill 4Kb.

>
~
_—
>
~
_—

Figure 1.1: BMT (Binary Merkle Tree) used as the native chunk hash in Swarm. In this example,
1337 bytes of chunk data is segmented into 32 byte segments. Zero padding is used to fill up the rest
up to 4 kilobytes. Pairs of segments are hashed together using the ethereum-native Keccak256 hash
to build up the binary tree. On level 8, the binary Merkle root is prepended with the 8 byte span and
hashed to yield the BMT chunk hash.

The BMT chunk address is the hash of the 8 byte metadata (span) and the root hash of a
binary Merkle tree (BMT) built on the 32-byte segments of the underlying data (see figure
1.1). If the chunk content is less than 4k, the hash is calculated as if the chunk was padded

with all zeros up to 4096 bytes.

Definition 7 — Binary Merkle Tree Root .
Define A[H,n](i,d) as the Binary Merkle Tree Root of data d fitting in at most 2" 32-byte

17



segments using H as its base hash:

AN (bytex — Segment) X wint8 — wint8 x bytex — Segment (1.36)
A[H,n] = : 0,nx byte{,2"} — Segment (1.37)
d ifi=0

A[H, n](i,d®0{2"" — len(d)}) if len(d) < 275
H(A[H,n|(d[:271],i— 1) &
®A[H,n](d[27:1,i—1)) otherwise

AH,n)(i,d) = (1.38)

Definition 8 — Binary Merkle Tree Hash .

Define BMT[H|(d,m) as the hash of Binary Merkle Tree Root of chunk length data d
prepended with metadata m. H is the base hash function, by default 256-bit Keccak. Note
that a chunk size blob of bytes can accommodate 128 32-byte segments, hence depth 7:

BMT : (bytex — Segment) — Chunk x byte{8} — Segment  (1.39)
BMT|[H] : Chunk x byte{8} — Segment (1.40)
BMTI[H|(d,m) = H(moA[H,7)(7,d)) (1.41)

1.1.6 Chunks

Definition 9 — Content addressed chunks .
Define content address chunk ¢ as a function from bytes data with size limit of 4096 bytes
and an associated address calculated with BMT:

CAC : Chunk x byte{8} — Chunks (1.42)
CAC(d,m) = (addr,cont) (1.43)
such that
addr = BMT(d,m) (1.44)
cont = mad (1.45)

By convention the metadata prefix m encodes the span using 64-bit little endian. If the
chunk is an intermediate chunk (see definition 11), the span is the length of the data that
the subtree spans over. If the chunk is a data chunk, then span encodes the data length:

m = LE*(len(d)) (1.46)

18



We also say that for cac = CAC(d, m) = (addr, cont):

ADDRESS(cac) = addr (1.47)
PAYLOAD(cac) = cont (1.48)

DATA(cac) = d (1.49)
METADATA(cac) = m (1.50)

For convenience SegCnt and the segment indexing function "[[]1]’ can be trivially extended
to apply to chunks:

SegCnt :  Chunks — wint6/ (1.51)
SegCnt(c) = SegCnt(DATA(c)) (1.52)
[[11 : Chunks x wint64 — Segment (1.53)
clli1] = pata(c)[[4]] (1.54)

1.1.7 Single Owner Chunks

Definition 10 — Single owner chunks .
A single owner chunk is defined as a content addressed chunk associated with an ID and an
ethereum address:

SOC = Account x Segment x CAC — Chunks (1.55)
SOC (owner,id,cac) = (addr, cont) (1.56)
where
addr = H(o®id) (1.57)
cont = id® Sig(o,id ® ADDRESS(cac)) ® PAYLOAD(cac) (1.58)

A single owner chunk’s address is the Keccak256 hash of identifier prepended to owner
account, while its data is serialised as follows:

— identifier — 32 bytes arbitrary identifier,
— signature — 65 bytes (r, s, v) representation of an EC signature (32+32+1 bytes),

19



— span — 8 byte little endian binary of uint64 chunk span,
— data — max 4096 bytes of regular chunk data.

Integrity of a single owner chunk is verified with the following process:

1. Deserialise the chunk content into fields for identifier, signature and payload.

2. Construct the expected plaintext composed of the identifier and the BMT hash of the

payload.

Recover the owner’s address from the signature using the plaintext.

4. Check the hash of the identifier and the owner (expected address) against the chunk
address.

w

Definition 11 — Packed address chunk.
Define the packed address chunk for a sequence of chunks C' as the concatenation of all the
addresses of the chunks in the sequence:

PAC . Chunksx x byte{8} — Chunks (1.59)

zmmam)¥<mc@gwmfmmmwm%@> (1.60)

1=0

1.1.8 Segment inclusion proofs

Using BMT hashes allows for compact segment inclusion proofs (substring relationship with
a 32-byte resolution).

Definition 12 — BMT segment inclusion proof .
Define IT°" (¢, i) as the BMT inclusion proof on chunk ¢ for segment index i:

" . Chunks x 0,127 — SIP (1.61)
SIP = Segment x Segment” x byte{8} (1.62)
% (c,i) = (c[Lil], (ho,h1,. .., he), METADATA(c)) (1.63)
where
h; = BMT(s;,j) (1.64)
s; = clstart(i,7): start(i, j) + 32 - 27] (1.65)
where
0 if =17
start(i,j) = < start(i,j+1) if int (i/27) =0 mod 2 (1.66)

start(i,j + 1) +32-27 otherwise

20



the bits of
the index

apply from - ~~~~~~~~~ -
~~~~~ RN BMT

0 right - ______ - inclusion proof
y \ ' Dy,

0 right - L - P,
C e BT
: C "
0 right - “\-

e P

f EAC

’ i .

data segment 26

Figure 1.2: Compact segment inclusion proofs for chunks. Assume we need proof for segment 26
of a chunk (yellow). The orange hashes of the BMT are the sister nodes on the path from the data
segment up to the root and constitute what needs to be part of a proof. When these are provided
together with the root hash and the segment index, the proof can be verified. The side on which
proof item 7 needs to be applied depends on the i-th bit (starting from least significant) of the binary
representation of the index. Finally the span is prepended and the resulting hash should match the
chunk root hash.

In order to validate segment inclusion proofs we first introduce the prover hash function Hy.

Definition 13 — BMT prover function.

Hy @ 0,127 x SIP — Address (1.67)
Hi(i, (d, sisters,m)) < H(m, H;(7,d, sisters)) (1.68)
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where

HY 0,7 x Segment x Segment” — Address (1.69)
d if j=0
HE(God,s) = S HHS(G—1,d,s)@®slj—11) if int(i/2771) =0 mod 2 (1.70)
H(slj— 11 HHA(j —1,d,s)) otherwise

Definition 14 — BMT SIP validation .
Define V' (a, i, p) as the validator of a BMT segment inclusion proof p for chunk at address
a on segment index i:

Ve o Segment x 0,127 x SIP — {T,F} (1.71)
V*(a,i,p) < Hp(i,p) =a (1.72)

Definition 15 — Single owner chunks data integrity proof .
Define a single owner chunk storage proof 11°°°(¢, i) as a segment inclusion proof of the data
payload of SOC ¢ on index i together with the ID and signature of SOC c:

def

SIPsoc = SIP x Sig x Segment (1.73)
el . 800 x 0,127 — SIPsoc (1.74)
76 (0, id, cac), i) = (p, sig,id) (1.75)
where
p = II*(cac,1) (1.76)
sig = Sig(o,id @ address(cac)) (1.77)

Definition 16 — Single owner chunks data integrity validation .
Define V9*5°¢ (g, 4, p) as the validator of a single owner chunk storage proof p for chunk at
address a on segment index i:

yerlol L Address x 0,127 x SIPsoc — {T,F} (1.78)
VrEocl(q, i, (p, sig,id)) < a= H(id® o) (1.79)
such that
OWNER 0 = FECRecover(sig,id®a’) (1.80)
PAYLOAD ¢ = Hy(i,p) (1.81)
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1.1.9 Postage stamps

Definition 17 — Postage stamps .

Stamps = Segment x wint64 x Timestamp x Address (1.82)

ps = (b,i,ts,a) € Stamps (1.83)
BATCHID(ps) = b (1.84)
INDEX (ps) = i (1.85)
TIMESTAMP(ps) = ts (1.86)
ADDRESS(ps) = a (1.87)

Definition 18 — Storage slot reference .
Define the storage slot reference slot(ps) of a postage stamp ps as the tuple of the batch
identifier and the within-batch stamp counter:

Slots = Segment x uint64 (1.88)
slot .  Stamps — Slots (1.89)
slot(ps) = (BATCHID(ps), INDEX(ps)) (1.90)

Definition 19 — Postage stamp validity .
Define V™M (ps) as the validator of the proof of relevance expressed as the postage stamp
ps relying on blockchain information:

yEME s Stamps x T x Nodes — {T,F} (1.91)

VAP (ps v, n) < (1.92)
AUTHENTIC BATCHID (ps) € Batches(y) A (1.93)
ALIVE Balance(ps) > 0 A (1.94)
AUTHORISED ECRecover(Sig(ps), encode(ps)) = Owner(ps) A (1.95)
AVAILABLE 0 <= INDEX(ps) < Size(ps) A (1.96)
ALIGNED PO(INDEX(ps),n) > DEPTH(reveal(y,n)) (1.97)

1.1.10 Ordering and sampling

Lemma 20 — Ordering and indexing functions.
Given an arbitrary finite set C, and another set [ with a total order <. Any invertible
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function total over C, f : C' — I defines a total order <; over C' as follows:

<, C OxC (1.98)
Ve,d € Cie<pd & fle) < f() (1.99)

Proof. f is injective wrt I, so Image(f) = J C I. Since < restricted to a subset (<) is also
a total order over J. Since f is invertible, C' and J are isomorphic and therefore the total
order < on J carries over to C.

Corollary 21 — hash orders.
Any hash function defines a total order on a finite set of byte slices.

Proof. The collision free nature of the hash function makes it practically invertible. The
actual hashes when read as binary encodings of integers, offer a natural integer ordering over
the values.

Example: the prefixed BMT hash transform (see 28) defines a total order over a set of
chunks.

Definition 22 — Sampler function.
Using f and its derivative ordering on C' C Dom/( f) we represent C' as an ordered sequence:

Seqg : (T —T)xP(T)— T+ (1.100)
Seq(f,C) = (1.101)
such that f(C'[i]) < f(C'[4]) for every 0 <i < j < |C| (1.102)

Finally, we define a sampler function for any f invertible with an image having a total order
and C' C Dom(f) such that it selects a prefix slice of length [ from the ordered C"

Sampler . (T — T) x P(T) x wint6} — T+ (1.103)
Sampler(f,C,1) = Seq(f,C)[:1] (1.104)
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1.2 Redistribution game

Definition 23 — Redistribution game round.
Define v as a redistribution game round. 7 is conceived of as a multidimensional index:

I = wint6) x wint6) X wint6 (1.105)
yel' = (c¢o0,i) (1.106)
CHAIN(y) ¢ ID of the blockchain context (1.107)
SERIES(y) o index of the parallel series (1.108)
ROUND(y) 4 sequential index of the round (1.109)
Define BLOCK(7) as the starting block height of this particular game ~:
BLOCK(Y) = ROUND(y) - ROUND_LENGTH + START_BLOCK (1.110)

Ordering by sequential index defines the chain of games, which lets us define the Prev
function:

Prev : I' =T (1.111)
Prev({c,0,i)) = (c,0,i—1) (1.112)

1.2.1 Transactions and on-chain registers

The smart contract receives transactions from applicants in phases. The following virtual
registers capture the information given in these transactions that are relevant for defining
the winner:

— batches (see definition 19)
stakes (see definition 24)
commits (see definition 25)
reveals (see definition 26)

Definition 24 — Stakes .
We define Stakes as the registry of stakes resulting from transactions sent to the staking
contract. A record is a tuple of a node overlay, the stake balance and the committed stake
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and can be updated.

Stakes . I'— Nodes x uint64 x uintb4 (1.113)

(n,s,m) € Stakes(y) < (1.114)
RIGHT AGE 3" < b — MIN_STAKE_AGE, 7 € Transactions(b’)  (1.115)

NODE OVERLAY n = H (origin(7) €& BZZ_NETWORK_ID & data(7)[0]) (1.116)
STAKE BALANCE s = amount(7) (1.117)
COMMITTED STAKE m = data(r) [1] (1.118)

There is only one stake allowed per node, so we can define the staked amount belonging to
a node as the minumum of the stake balance and the committed stake times the unit price
of storage:

Stake : T x Nodes — uint64 (1.119)
Stake(y,n) = min(s,m - Price(y)) (1.120)

Definition 25 — Commits .

We define Commits(7y) as the registry of applications for a game 7 resulting from a transac-
tion sent to the game contract’s commit endpoint. A tuple of the overlay of the committing
node, its commitment hash and the number of the block containing the transaction is en-
tered in the register after verifying that (i) the transaction was sent during the commit phase
(right time), and (ii) that the node has enough stake and is not frozen (right amount).

Commits : I — Nodes x Segment x Blocks (1.121)

(n,h,b) € Commits(y) < (1.122)
RIGHT TIME b < PHASE LENGTH mod ROUND_LENGTH (1.123)

RIGHT AMOUNT stake(y,n) > MINIMUM_STAKE (1.124)
(REDUNDANCY) (1.125)

Definition 26 — Reveals.

We define Reveals as the registry of reveals resulting from a transaction sent to the game
contract’s reveal endpoint. The reveal record is a tuple of the node overlay, the two commit-
ment hashes, the self-reported storage depth, a serial index used for sorting, the obfuscation
key, and the block number. The record is entered in the register after it is validated that
(i) it was submitted during the reveal phase (right time), (ii) the commitments when obfus-
cated match the commit by the same node (right reveal), and (iii) that the neighbourhood
selection anchor falls within the node’s area of responsibility using the self-reported depth
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(right location).

RevealEntry :  Nodes x Address® x uint8?* x Nonce x (A
Reveals . T' — P(RevealEntry) (1.127)

r = (n,che,chs, sd, i, k,b) € Reveals(y) < ( (1.128)
NODE(r) = n (1.129)

CHC(r) = chc (1.130)

CHS(r) = chs (1.131)

DEPTH(r) = sd (1.132)
INDEX(r) = i (1.133)
NONCE(r) = k (1.134)
BLOCK(r) b (1.135)

) (1.136)

& (1.137)

RIGHT TIME p<b<2p modr (1.138)

p = PHASE LENGTH, » = ROUND_LENGTH (1.139)

RIGHT REVEAL H(n@® sd® che® chs® k) = h such thal.140)
(n,h,b') € Commits(y) for some &' (1.141)

RIGHT LOCATION PO(addr(n), NSA(Prev(y))) > sd (1.142)
(RESPONSIBILITY) (1.143)

There is only one reveal allowed per node, so we can define the reveal belonging to a node:

Reveal : T x Nodes — RevealEntry (1.144)
Reveal(y,n) = r (1.145)
such that
n = Node(r) (1.146)
r € Reveals(7) (1.147)

1.2.2 Random nonces

Definition 27 — Random nonces for the round.
From the round’s random seed (see definition 103 appendix ?7) we can derive all the necessary
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random input nonces:

N.HOOD SELECTION ANCHOR NSA(y) = H(R(y)® BE%(SK(v))) (1.148)
TRUTH SELECTION NONCES TSN (y) = H(R(v) @ BE®(0)) (1.149)
WINNER SELECTION NONCES WSN(v,i) = H(R(y)® BE(1)) (1.150)
RESERVE SAMPLING SALT RSS(y) £ H(R(v)) (1.151)
SEGMENT SELECTION NONCE SSN(v,i) = H(R(y)® BE(i)) (1.152)
where

SK : T' = uint64 (1.153)
SK(y) & {0 if |Rev(?als(7)| >0 (1.154)

SK(Prev(y)) +1 otherwise

Let us now define the witness selection function W that selects two random witness indexes
as well as the last index of the reserve sample such that they are all distinct:

W o T xuint64 x {0,1,2} — wint8 (1.155)
(SSN(y,0) modm—1 ifk=0
m— 1 if k=2

Wy, m k) = {m—2 if k= 1A (1.156)

SSN(~,0) = SSN(v,1) mod m — 1
[ SSN(7,1) mod m —2  otherwise

1.2.3 Winner selection and claim validation

Definition 28 — Prefixed hash .

Define the hash prefixing function prefix(H, p) as a function which when applied to a hash
function H and a constant byte slice p outputs a hash function which for every input returns
the hash of the input prefixed by p using H.

prefix :  (bytex — Segment) x bytex — (bytex — Segment)  (1.157)
prefit(H,p) : bytex — Segment (1.158)
prefiz(H,p)(b) = H(p@®b) (1.159)

Exceptionally, we define the prefixed version of BMT hash (denoted as BMT]]) as one that
uses the prefixed verson of its base hash:

BMT|| : bytex — Chunk x byte{8} — Segment (1.160)
BMT[p] = BMT]prefiz(H,p)] (1.161)
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Definition 29 — Transformed chunk reserve sample.
Let us now define the chunk transformation function A%(p) for a random nonce prefix p as
follows:

AY . Nonce — Chunks — Segment (1.162)
A%(p) : Chunks — Segment (1.163)
A (p)(c) = BMT]p|(DATA(c), METADATA(c)) (1.164)

Define the transformed reserve sample RS“(y,n) for game v and node n as the first 24
chunks of the node’s reserve at block BLOCK(7), using the ordering defined (see lemma 20
and definition 22) by the hash (see definition 28) of their data using BMT with 256-bit

Keccak prefixed with random nonce p as its base hash.

RSY . T x Nodes — Chunksx* (1.165)
RSC(y,n) = Sampler(A°(p), Reserve(y,n),2) (1.166)
where
d = SAMPLE DEPTH (see 77) (1.167)
= RSS(7) (see definition 27) (1.168)

Definition 30 — Chunk reserve sample commitment hash .

Define CH(v,n,) for game v and node n as the BMT chunk hash of the packed address
chunk (see definition 11) packing the chunks of the transformed reserve sample (see definition
29) for game 7 and node n.

CH® : T x Nodes — Address (1.169)
CHC(y,n) = Address(PACY(RSC(v,n),p)) (1.170)

where
p = RSS(7) (see definition 27) (1.171)

and where

PACY . Chunks* x Nonce — Chunks (1.172)
PACC(C.p) * cAC (@lf”w“ Seg(C'Ti1, p),m) (1.173)

where
Seq(C'Lil,p) = Address(C[i])® A (p)(CLil) (1.174)
m = LE®*(2-32-len(C)) (1.175)
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Definition 31 — Transformed slots reserve sample.
Let us now define the slots transformation function A®(p) for a random nonce p as follows:

A% ' Nonce — Chunks — Segment (1.176)
A%(p) :  Chunks — Segment (1.177)
ASp)(e) = HIpl(Slot(Stamp(c))) (1.178)

Define the transformed reserve sample RS* (v, n) for game ~ and node n as the first 2¢ chunks
of the node’s reserve at block BLOCK(7y), using the ordering defined by the slot transformation
function using prefix p:

RS® . T x Nodes — Chunksx (1.179)
RSS(y,n) = Sampler(A®(p), Reserve(y,n),2%) (1.180)
where
— SAMPLE_DEPTH (see ??) (1.181)
= RSS(7) (see definition 27) (1.182)

Definition 32 — Transformed slots reserve sample commitment hash .

Define CH®(v,n) for game + and node n as the BMT chunk hash of the packed address
chunk (see definition 11) the chunks of the transformed reserve sample (see definition 29) for
game v and node n.

CH® : T x Nodes — Address (1.183)
CHS(y,n) = Address(PAC(RS®(v,n), m)) (1.184)
where
m = LE%®(32.29) (1.185)
d = SAMPLE_DEPTH (sce ?7) (1.186)

Definition 33 — Weighted selection.

We define WeightedSelect(w, k) as a sampler function which selects an index 0 < i < len(w)
determined by the input nonce (pseudorandom number) & in such a way that the indexes
have a probability of being selected proportional to the weights in w.

WeightedSelect :  wint256+ x wint256 — wint256+ (1.187)
. ' if k <wli d Wi
WeightedSelect(w, k) = ! . . ' I’U[Z] o [281.188)
WeightedSelect(w[:4],k) otherwise
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such that ¢ = len(w) — 1, and where W (cumulative weights) is defined as

W wint256+ — wint256 (1.189)
. 0 ifi1=0
wy o Jwtol o=y (1.190)
Wit —1] +wli] otherwise

Definition 34 — Truth selection.
We determine the truth from reveals through selection weighted by stake density using the
truth selection nonce as random input.

Truth . I' — RevealEntry (1.191)

def

Truth(y) = R(vy)[WeightedSelect(weights, TSN (7))] (1.192)
where weights are stake densities such that
weights[i] = Stake(vy, NODE(R[i])) - 2PEFH(RED) (1.193)
where R is the reveals of the round sorted by index:

R = S—>eq(INDEX, Reveals(7y)) (1.194)

Definition 35 — Honest reveals.
We define honest reveals as the subset of reveals for the round agreeing with the truth in
reserve commitment hashes and storage depth.

HonestReveals : I' — RevealEntryx (1.195)
HonestReveals(y) = S—>a](INDEX, {r € Reveals(y)|Honest(r)}) (1.196)
where
Honest :  RevealEntry — {T,F} (1.197)
Honest(r) < (1.198)
CHC(r) = cHC(truth(y)) A (1.199)
CHS(r) = cHS(truth(y)) A (1.200)
DEPTH(r) = DEPTH(truth(y)) (1.201)

Definition 36 — Winner selection.
We determine the winner from honest reveals through selection weighted by stake using the
winner selection nonce as random input.

Winner : I' = RevealEntry (1.202)
Winner(y) = HonestReveals(y) [ WeightedSelect(weights, WSN (7)1 (1.203)
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where weights are stakes such that

weights[i1 = Stake(y, NODE(HonestReveals [i])) (1.204)

1.2.4 Proofs of reserve

Definition 37 — Proof of reserve .
Proof of reserve provides evidence that the reserve is replicating relevant content and shows
a proof of recency of retaining chunk data in full integrity.

POR : SIP? x Stamps (1.205)
II* : I' x Chunks x Chunks+ x {0,1,2} - POR  (1.206)
M*(y,¢,C k) = ( (1.207)
WITNESS PROOF 1" (e, d - 1), (1.208)
RETENTION PROOF *(C'1, 5), (1.209)
POSTAGE STAMP Stamp(C'[1]) (1.210)
) (1.211)
where

i = W(v,len(C), k) (1.212)
j = SSN(v,k) mod 128 (1.213)

SegCnt(c) 1 if C = RS?
d = —/——2X | = 1.214
len(C') ( {2 if C = RS¢ ( )

Definition 38 — Proof of reserve validation.

V& I' x Nodes x Address x {0,1,2} x POR — {T,F} (1.215)
VE(y,n,ch,k,m) (1.216)
RELEVANCE V¥ (ch,d - i, py) N (1.217)
VI (ps v, n) A (1.218)
RETENTION DATA(py,) = a A (1.219)
V¥ (a, j,pr) A (1.220)
RECENCY i =WI(y, SegCnt(pw), k) A (1.221)
j=SSN(y,k) mod 128 A (1.222)
RETRIEVABILITY PO(a,n) > sd (1.223)
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where

a = ADDRESS(ps) (1.224)

T = (pu,Pr,ps) (1.225)

sd = DEPTH(Reveal(y,n)) (1.226)
SegCnit(pw) 1 if O = RS

d = —/—— X2 [ = 1.227

2D 2 if C = RS¢ (1.227)

D = SAMPLEDEPTH (see ?7?) (1.228)

Definition 39 — Proof of chunk density validation.
Define V (v, po, p1, p2) as the validation function for the proof of chunk density for round ~
and proof of reserve and segment inclusion proof pairs pg, p1, ps.

PORT : POR x SIP (1.229)
Ve : T x PORT® — {T,F} (1.230)
VP (y, mo, 71, m2) > (1.231)
RIGHT DATA SEGMENT DATA(pry) = DATA(pty,) for k € {0,1,2} A (1.232)
RIGHT ADDRESS SISTER(pwy, 0) = tay for k € {0,1,2} A (1.233)
RIGHT ORDER tag < ta; < tas A (1.234)
RIGHT SIZE tay < MAX_SAMPLE _VALUE (1.235)

where for k € {0, 1,2}
Jjr = SSN(v,k) mod 128 (1.237)
T — <<pwk7p7nka *>7ptk> (1238>

and where

p = RSS(Prev(y)) (see definition 27) (1.239)

Definition 40 — Proof of stamp density validation.
Define V5P (v, pso, ps1, pss) as the validation function for the proof of stamp density for round
~ and postage stamps psg, psi, pSa.

Vs T x Stamps® — {T,F} (1.240)

Vo (v, pso, ps1, psa) > (1.241)
RIGHT ORDER tag < ta; < tas A (1.242)
RIGHT SIZE tas < MAX_SAMPLE VALUE (1.243)
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where for k € {0,1,2}

tay = H(Slot(psk) D p)

and where

p = RSS(Prev(y)) (see definition 27)

Definition 41 — Proof of entitlement.

Proof of entitlement captures all the evidence a node needs to submit with their claim

transaction to valildate.

POE
HENT

I (y,n) =

where for k € {0, 1,2}
Dl
Jk
U
and where
crs =
srs =
p =

PORT? x POR?
I' x Nodes — POE

(

(IT"°%(~y, n, PAOC<CT‘S, p),crs,0), pto),
(IT"°% (v, m, PACC(crs,p), crs, 1), pty),
(IT"°% (v, m, PACC(crs,p), crs,2), pta),

"% (v, n, PAC(srs), srs,0),
7% (v, n, PAC(

I1"% (v, n, PAC(

)

srs), srs, 1),
srs), srs,2),

= H?)Irpeﬁz (p7 r [Zk] a]k)

= SSN(v,k) mod 128
= WI(y, length(crs), k)

RS%(,n)
RS*(v,n)
RSS(Prev(7)) (see definition 27)

Definition 42 — Winner’s claim validation.
Define VF°"(~, p) as the validation function for the proof of entitlement p as part of the
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winning claim for game ~:

VreE . T'x POE — {T,F} (1.262)

VPP (v, p) < (1.263)

RESERVE: (1.264)

CHUNKS VEk € {0,1,2}, V¥(y,n,CHC(r), k, m) A (1.265)

STAMPS Vk € {0,1,2}, V¥(v,n,cHS(r), k, dr) A (1.266)

RESERVE SIZE: (1.267)

CHUNK DENSITY VP (v, (mo, plo), (m1, pt1), (T, pta)) A (1.268)

STAMP DENSITY VP (v, PS(¢o), PS(¢1), PS(¢2)) (1.269)
where

n = NODE(r) (1.270)

= Winner(y) (1.271)

p = ({mo,pto), (m1,pt1), (T2, Pta), G0, P1, P2) (1.272)

Corollary 43 — Outpayment scheme is fair.
Rewarding the pot to randomly selected neighbourhood implements a redistribution scheme
that is fair across neighbourhoods.

Proof. With the consensus mechanism we can show that the Nash-optimal strategy of nodes
is to follow the protocol and consent on the reserve. On the other hand, the optimal strategy
for uploaders is to uniformly distribute chunks across the name space. As a consequence,
nodes are expected to have identical storage depth and its variance is independent of being
chosen. Long term then relative cumulative outpayments by the redistribution game converge
to the fair share.

Secondly, we argue that the mode of selecting the winner is fair within neighbourhoods.

Proof.
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Chapter 2

Data types and algorithms

2.1 Built-in primitives

2.1.1 Crypto

This section describes the crypto primitives used throughout the specification. They are ex-
posed as buzz built-in functions. The modules are hashing, random number generation, key
derivation, symmetric and asymmetric encryption (ECIES), mining (i.e., finding a nonce), el-
liptic curve key generation, digital signature (ECDSA), Diffie-Hellman shared secret (ECDH)
and Reed-Solomon (RS) erasure coding.

Some of the built-in crypto primitives (notably, sha3 hash, and ECDSA ecrecover) are repli-
cating crypto functionality of the Ethereum VM. These are defined here with the help of
ethereum api calls to a smart contract. This smart contract just implements the primitives
of "buzz” and only has read methods.

Hashing

The base hash function implements Keccak256 hash as used in Ethereum.

Definition 44 — Hashing.
// /ecrypto

define function hash @input []Jbyte
7and/ @suff
return segment
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ethereum/call "sha3" with @input append= @suff
on context contracts "buzz"

Random number generation

Definition 45 — Random number generation.
// /crypto

define function random type
return [Q@type sizelbyte

Scrypt key derivation

The crypto key derivation function implements scrypt

Definition 46 — Scrypt key derivation.
// /crypto

define type salt as [segment sizelbyte
define type key as [segment size]byte

// params for scrypt key derivation function
// scrypt.key(password, salt, mn, r, p, 32) to gemerate key

define type kdf
n int // 262144
r int // 8
p int // 1

define function scrypt from @password
with salt
using kdf
return key
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Mining helper

This module provides a very simple helper function that finds a nonce that when given as
the single argument to a mining function returns true.
Definition 47 — Mining a nonce.

// /crypto
define type nonce [segment size]lbyte
define function mine @f function nonce return bool
OGnonce = random key
return Ononce call @f @nonce
self of

Symmetric encryption

Symmetric encryption uses a modified blockcipher with 32 byte blocksize in counter mode.
The segment keys are generated by hashing the chunk-specific encryption key with the
counter and hash that again. This second step is required so that a segment can be se-
lectively disclosed in a 3rd party provable way yet without compromising the security of the
rest of the chunk.

The module provides input length preserving blockcipher encryption.
Definition 48 — Blockcipher.
// /crypto

// two-way (en/de)crypt function for segment
define function crypt.segment segment

key
@i uint8
hash Qkey and @i // counter mode
hash // extra hashing
@segment length // chop of needed
xor @segment // xor key with segment

// two-way (en/de)crypt function for arbitrary length
define function crypt @input [Jbyte
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with key
return [@input length]byte
as

@segments = Q@input cach segment size // iterate segments

of input

go crypt.segment at Qi++ with Qkey // concurrent crypt

on segments

return wait for @segments // wait for results
join // join (en/de)

crypted segments

Elliptic curve keys

Public key cryptography is the same as in Ethereum, it uses the secp256k1 elliptic curve.

Definition 49 — Elliptic curve key generation.
// /crypto
define type pubkey as [64]byte
define type keypair
privkey [32]byte
pubkey

define type address as [20]byte

define function address pubkey
return address
as
hash pubkey
from 12

define function generate
7using entropy
as
@entropy = random segment 1f no Q@entropy
http/get "signer/generate?entropy=" append Qentropy
as keypair
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Asymmetric encryption

Asymmetric encryption implements ECIES based on the secp256k1 elliptic curve.
Definition 50 — Asymmetric encryption.
// /crypto

define function encrypt @input []byte
pubkey
return [@input length]byte

define function decrypt @input []byte
keypair
return [@input length]byte

© 00 N O T = W N

Signature

Crypto’s built-in signature module implements secp2156k1 elliptic curve based ECDSA. The
actual signing happens in the external signer running as a separate process (possibly within
the secure enclave). As customary in Ethereum, the signature is represented and serialised
using the r/s/v format,
Definition 51 — Signature.

// /crypto

define type signature
r segment
S segment
v uint8
signer private keypair

© 00 N O U = W N

define type doc
preamble []byte
context []lbyte
asset segment

== = = =
=W NN = O

define function sign @input []Jbyte
keypair
return signature

— = = =
O J O Ot
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@doc = doc{ "swarm signature", context caller,
http/get "signer/sign?text=" append @doc
append "&account=" append Qkeypair pubkey address

Osig

signature
@sig signer = Qkeypair
OGsig

define function recover signature
Q@input [lbyte
@caller []byte
return pubkey

@doc = doc{ "swarm signature", Q@caller,

ethereum/call "ecrecover"
context contracts "buzz"
pubkey

Diffie-Hellmann shared secret

The shared secret module implements elliptic curve based Diffie-Helmann shared secret
(ECDH) using the usual secp256k1 elliptic curve. The actual DH comes from the external

signer which is then hashed together with a salt.

Definition 52 — Shared secret.
// /ecrypto

define function shared.secret keypair

and pubkey
salt
return [segment size]byte

http/get "signer/dh7?pubkey=" append Q@pubkey append

account=" Qkeypair address
hash @salt
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Erasure coding

Erasure coding interface provides wrappers extend/repair for the encoder/decoder that
work directly on a list of chunks.!

Assuming n out of m coding. extend takes a list of n data chunks and an argument for
the number of required parities. It returns the parity chunks only. repair takes a list of m
chunks (extended with all parities) and an argument for the number of parities p = m — n,
that designate the last p chunks as parity chunks. It returns the list of n repaired data chunks
only. The encoder does not know which parts are invalid, so missing or invalid chunks should
be set to nil in the argument to repair. If parity chunks are needed to be repaired, you call
repair @chunks with @parities; extend with Q@parities

Definition 53 — CRS erasure code interface definition.

// /crypto/crs

define function extend G@chunks []chunk
@parities uint
return [Q@parities]chunk

define function repair @chunks []chunk
@parities uint
return [Q@chunks length - @parities]chunk

Definition 54 — CRS erasure coding parameters.
// /crypto/crs
define strategy "race"|"fallback"|"disabled"

define type params

parities uint
strategy

2.1.2 State store

Definition 55 — State store.
// /statestore

define type key [Jbyte

! Cauchy-Reed-Solomon erasure codes based on https://github.com/klauspost/reedsolomon.
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define type db [Jbyte
define type value []byte

define function create db
define function destroy db

define function put value
db
key

define function get key
db
return value

2.1.3 Local context and configuration

Definition 56 — Context.
// /context

define type contract "buzz"|"chequebook"|"postage"|[""

define type context
contracts [contract]ethereum/address

2.2 Bzz address

2.2.1 Overlay address

Swarm’s overlay network uses 32-byte addresses. In order to help uniform utilisation of the
address space, these addresses must be derived using a hash function. A Swarm node must
be associated a Swarm base account or bzz account, which is an Ethereum account that the
node (operator) must possess the private key for. The node’s overlay address is derived the
public key of this account.

Definition 57 — Swarm overlay address of node A.
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overlayAddress(A) = Hash(ethAddress|bzzNetworkID) (2.1)

where

— Hash is the 256-bit Keccak SHA3 hash function
— ethAddress - the ethereum address (bytes, not hex) derived from the node’s base ac-
count public key: account = PubKey(K%*)[12 : 32]), where
— PubKey is the uncompressed form of the public key of a keypair including its 04
(uncompressed) prefix.
— K% refers to the node’s bzz account key pair
— bzzNetworkID is the bzz network id of the swarm network serialised as a little-endian
binary wuint64.

In a way, deriving the node address from a public key means the overlay address space is
not freely available: to occupy an address you must possess the private key of the address
which other nodes need to verify. Such authentication is easy using a digital signature of a
shared consensual piece of text, see 2.2.

2.2.2 Underlay address

To enable peers to locate the a node on the network, the overlay address is paired with
an underlay address. The underlay address is a string representation of the node’s network
location on the underlying transport layer. It is used by nodes to dial other nodes to establish
keep-alive peer to peer connections.

2.2.3 BZZ address

Bzz address is functionally the pairing of overlay and underlay addresses. In order to ensure
that an overlay address is derived from an account the node possesses as well as verifiably
attest to an underlay address a node can be called on, bzz addresses are communicated in
the following transfer format:
Definition 59 — Swarm bzz address transfer format.

// ID: /swarm/handshake/1.0.0/bzzaddress

= "proto3";
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BzzAddress {
bytes Underlay = 1;
Signature Sig = 2;
bytes 0Overlay = 3;

Here the signature is attesting to the association of an overlay and an underlay address for
a network.

Definition 60 — Signed underlay address of node A.

signedUnderlay(A) = Sign(underlay|overlay|bzzNetworkID) (2.2)

of the underlay with overlay and bzz network ID appended as plaintext and hashes the
resulting public key together with the bzz network ID.
Definition 61 — Node addresses: overlay, underlay, bzz address.

// /bzz

define type overlay [segment size]byte
define type underlay []lbyte

define function overlay.address pubkey
O@network uint64

hash Q@pubkey address and OQnetwork
overlay

define function valid bzz.address
@network uint64

assert Q@bzz.address overlay == overlay.address crypto/
recover @bzz .address signature @bzz .address
Qunderlay
OGnetwork
define function bzz.address overlay
underlay
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@account ethereum/address

@sig = crypto/sign Qunderlay @account
bzz.address{ Qoverlay, Q@underlay, @sig }

In order to get the overlay address from the transfer format peer info, one recovers from
signature the peer’s base account public key using the plaintext that is constructed as per
60. From the public key, the overlay can be calculated as in 3. The overlay address thus
obtained needs to be checked against the one provided in the handshake.

Signing of the underlay enables preflight authentication of the underlay of a trusted but not
connected node.

Since underlays are meant to be volatile, we can assume and in fact expect multiple underlays
signed by the same node. However, these are meant to be temporally ordered. So one with
a newer timestamp invalidates the older one.

In order to make sure that the node connected through that underlay does indeed operate
the overlay address, its authentication must be obtained through the peer connection that
was initiated by dialing the underlay. The This protects against malicious impersonation of
a trusted overlay potentially.

2.3 Chunks, encryption and addressing

2.3.1 Content addressed chunks

First let us define some basic types, such as payload, span, segment. These fixed length byte
slices enables verbose expression of fundamental units like segment size or payload size.
Definition 62 — segment, payload, span, branches.

// /chunk
define type segment [32] byte // untt for type definitions
define type payload [:4096] byte // wariable length maz 4
Kilobyte
define type span uint64 // little endian binary

marshalled

define function branches
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as payload size / segment size

Now let’s turn to the definition of address, key and reference:

Definition 63 — Chunk reference.

// /chunk
define type address as [segment sizelbyte

define type reference
address // result of bmt hash
key if context.encryption // decryption key optional
context dependent)

Now, define chunk as a object with span and payload.

Definition 64 — Content addressed chunk.
// /chunk

define type chunk

span // length of data span subsumed under node
payload // maz 4096 bytes

define function address of chunk
as

@chunk payload bmt/hash with @chunk span

define function create from payload
7over span

as
@span = @payload length if no @span
@chunk = chunk{ @span, @payload 17
return Q@chunk if no context encryption
@key = encryption.key for @chunk
@chunk encrypt with Qkey
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Where length is the content of the length field and reference size is the sum of size of the
referencing hash value and that of the decryption key, which is currently 64, as we use 256-bit
hashes and 256-bit keys.

In order to remove the padding after decryption before returning the plaintext chunk.
Definition 65 — Span to payload length.

// /chunk

define function payload.length span

while @span >= 4096
Ospan = @span + 4095
/ 4096
* reference size
return Ospan

Finally, we can define the public API of chunks for retrieval and storage.
Definition 66 — Chunk API retrieval.

// /chunk

define function retrieve reference
has api GET "chunk/<reference>"

retrieve Q@reference address chunk
(decrypt @reference key @reference key)

Definition 67 — Chunk API: storage.
// /chunk

define function store payload
? span
has api POST "chunk/(?span=<span>)"
payload body

@chunk = create @payload @span
reference{ @chunk address, @chunk key }
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2.3.2 Single owner chunk

Single owner chunks are the second type of chunk in swarm. They constitute the basis of

swarm feeds.
Definition 68 — Single owner chunks.

// /soc

// data structure for single owner chunk
define type soc

id [segment sizelbyte // <2d ’within’ owner
namespace
signature crypto/signature // owner attests to <content,
id >
chunk // content: embeds a content
chunk

// constructor for single owner chunks
define function create from chunk
by Qowner crypto/keypair
on @id [segment size]byte
as
@sig = crypto/sign @id and @chunk address by Qowner
soc{ @id, @sig, @chunk }

define function address soc
as
hash @soc id and @soc signature signer address

Definition 69 — Single owner chunk API: retrieval.

// /soc

define function retrieve Q@id [segment sizelbyte
by Qowner ethereum/address
?with key
has api GET on "soc/<owner>/<id>(7key=<key>)"
as
retrieve hash @id and Qowner
as soc
chunk (decrypt with @key if Qkey)
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Definition 70 — Single owner chunk API: storage.
// /soc

define function store payload
@id [segment sizelbyte
Qowner ethereum/address
? span
has api POST "soc/<owner>/<id>7span=<span>&encrypt=<encrypt>

<payload> body

@span = Q@payload length no @span
@chunk = chunk{ @span, @payload }
context encryption

@key = encryption.key @chunk
@Gchunk encrypt= Qkey
@soc = create @chunk @id private key Qowner

reference{ @soc store address, Qkey 1}

2.3.3 Binary Merkle Tree Hash

The hashing method used to obtain the address of the default content addressed chunk is
called the binary Merkle tree hash, or BMT hash for short.

Calculating the BMT hash

The base segments of the binary tree are subsequences of the chunk content data. The size
of segments is 32 bytes, which is the digest size of the base hash used to construct the tree.
Given the Swarm hash tree used to represent files (see 2.5.1) assumes that intermediate
chunks package references to other chunks.

Obtaining the BMT hash of a sequence involves the following steps:

1. padding - If the content is shorter than the maximum chunk Size (4096 bytes), it is
padded with zeros up to chunk size. Note that this zero padding is only for hashing
and does not impact chunk data sizes.

2. chunk data layer - Calculate the base hash of pairs of segments in the padded chunk,
i.e., segment size (2 * 32) units of data and concatenate the results.
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building the tree - Repeat previous step on the result until the result is just one section.

4. calculate span - Calculate the span of the data, i.e., the size of the data that is subsumed
under the chunk represented by the unpadded data as a 64-bit little-endian integer
value (see 2.5.1).

5. integrity protection - Prepend the span to the root hash of the binary tree and calculate

the base hash of the data.
Definition 71 — BMT hash.

// /bmt

define function hash payload

span

@padded = Qpayload [: chunk sizelbyte // use zero
padding

// for BMT hashing only

hash @span and root @padded chunk size

S O = W N

define function

root @section [Jbyte

@len uint

return hash @section // data lewvel

@len == 2 x segment size
@len /= 2 // recursive call
@children = @section @len self Q@len
wait @children

join hash

Inclusion proofs

Having the segments align with the hashes packaged in these chunks one can extend the
notion of inclusion proofs to files. The BMT hash enables compact 3rd party verifiable
segment inclusion proofs.

2.3.4 Encryption

Symmetric encryption in Swarm is using a slightly modified version blockcipher in counter
mode.

The encryption seed for the chunk is derived from the master seed if given, otherwise just

52



generated randomly.

The reference to a single chunk (and the whole content) is the concatenation of the hash of
encrypted data and the decryption key (see 63). This means the encrypted Swarm reference
(64 bytes) will be longer than the unencrypted one (32 bytes). When a node syncs encrypted
chunks, it does not share the full references (or the decryption keys) with the other nodes in
any way. Therefore, other nodes will be unable to access the original data, or in fact, even
to detect whether a chunk is encrypted.

Definition 72 — Chunk encryption/decryption API.

// generate key for a chunk
define encryption.key chunk
? @seed [segment.size]byte

return crypto/random key no @seed // generate new
hash @seed and @chunk address

define function encrypt chunk
key

Osegments = Q@chunk data pad chunk size
segment size
crypt Qi++ Qkey
@span = chunk span crypt branches @seed
O@payload = wait Osegments
join
chunk{ @span, G@payload }

define function decrypt chunk
key

@span = @chunk span

crypt branches Qkey
O@segments = chunk data O@span payload.length

segment size
crypt Qi++ Qkey

O@payload = wait Osegments

join
chunk{ @span, @payload }
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Encrypted Swarm chunks are not different from plaintext chunks and therefore no change is
needed on the P2P protocol level to accommodate them. The proposed encryption scheme
is end-to-end, meaning that encryption and decryption is done on endpoints, i.e., where the
http proxy layer runs. This has an important consequence that public gateways cannot be
used for encrypted content. On the other hand, the apiary modular design allows for client
side encryption on top of external APIs while proxying all other calls via the gateway.

2.4 Postage stamps

2.4.1 Witness type

There can be different implementations of postage stamps that differ in the structure and
semantics of the proof of payment. To allow for new cryptographic mechanisms to be used
as they are developed, the witnessType argument indicates the type of the witness used.

Witness type 0 stands for ECDSA witness, which is an ECDSA signature on the byte slice
resulting from the concatenation of 1) preamble constant 2) chunk hash 3) batch reference
4) valid until date.? This is the bare minimum that postage stamp contracts and clients
must implement.?

Witness type 1 refers to the RSA witness, which is an RSA signature on the same 128 bytes
as above. The binary encoding of the RSA signature is of variable length, and is an Solidity
ABI encoded array of the RSA signature s.*

The RSA witness is specified so that blind stamping services can be implemented in a simple
fashion, in order to mitigate the privacy issues arising from the ability to link chunks signed
with the same private key. Even though blind ECDSA signatures also exist, their protocol
requires more rounds of communication, making the implementation of such a service more
complex, more error-prone and less performant.

The inclusion of the entire public key in each RSA witness rather than storing the public key
in contract state and just referencing it from the witness is justified by reducing the gas costs

2The binary encoding of the ECDSA signature is 65 bytes resulting from the concatenation of the r (32
bytes), s (32 bytes) and v (1 byte) parameters of the signature, in this order. The signature is calculated on
the secp256k1 elliptic curve, just like the signatures of Ethereum transactions.

3The ECDSA witness is the simplest and cheapest solution both in terms of gas consumed by the stamp
verification contract and in terms of computational resources used off chain. Also, it does not rely on crypto-
graphic assumptions in addition to those on which Ethereum critically relies, therefore as long as Ethereum
is considered cryptographically secure, no advance in cryptorgraphy can render this witness type insecure.
This is the justification for this witness type to be the only mandatory witness type to be implemented.

4as defined in PKCS #1, https://tools.ietf.org/html/rfc8017 and the RSA public key parameters
n (RSA modulus) and e (public exponent).
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of interactions with the contract as well as future-proofing the design in case contract state
rent is introduced in Ethereum. These considerations are more important than the brevity
of postage stamps, marginally reducing the bandwith costs of uploading and forwarding
stamped content.

Note that cryptographic advances can render RSA witnesses insecure without rendering
Ethereum insecure, therefore RSA witnesses can be phased out in future versions of the pro-
tocol, if the security of RSA signatures gets compromised. Note, furthermore, that such blind
signing services are not entirely trustless, through the damage they can incur is bounded.
Trustless blind stamping services based on ZK proofs are not feasible at this stage, as the
current algorithms are not sufficiently performant for the purpose, but given the rapid ad-
vances in the field, the development of suitable algorithms can be expected in the future, in
which case a corresponding witness type will have to be specified in a separate SWIP.

2.4.2 Contract Upgrades

In order to facilitate the upgrade of the contract either in case of a discovered vulnerability
or some feature extension (such as adding new witness types), it is recommended that the
part holding the funds with the database of payments and the part that verifies witnesses
are in separate contracts so that a backwards-compatible upgrade can be performed with
minimal disruption.

In order to avoid centralized control, it is also recommended that it is the witness-verifying
contract that is referenced in client configuration so that client operators can independently
decide for themselves when and whether to switch to a new contract, as they become avail-
able.

Nodes participating in the same postage system are configured to reference the same contract
on the same blockchain. This contract must conform to the following interface:

Definition 73 — Postage contract.

This accessor method returns if the proof embodied by witness checks out for all other
arguments within the claimed validity period, i.e. when block.timestamp (the output of
TIMESTAMP EVMopcode) is between beginValidity (inclusive) and endValidity (exclusive).
Outside of the validity period, the return value is undefined.
Definition 74 — Postage stamp basic types: batchID, address, witness, stamp,
validity.
// /postage

define type batchid [segment size]byte
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define type address
define type witness

// postage stamp
define type stamp

define function valid stamp

2.5

batchid
address
witness

// check
ethereum

call

O@stamp

Files,

context contracts

2.5.1 Files and the Swarm hash

This table gives an overview of data sizes a chunk span represents, depending on the level

of recursion.

bzz/address
crypo/signature

validity on blockchain
"valid"

manifests and data structures

"postage"

span
unencrypted encrypted

level chunks \1092 of bytes \staluiard \ chunks \log2 of bytes \stalniard
0 1 12 4KB 1 12 4KB

1 128 19 512KB 64 18 256KB

2 16,384 26 67MB 4,096 24 16MB

3 2,097,152 33 8.5GB 262,144 30| 1.07GB

4 268.44M 40 1.1TB 16.78M 36 | 68.7GB

5 | 34,359.74M 47 140TB || 1,073.74M 42 4.4TB

Table 2.1: Size of chunk spans

Calculating the Swarm Hash

Client-side custom redundancy is achieved by RS erasure coding; using it neccessitates some

RS parameters.

o6



Definition 75 — File API: upload/storage; swarm hash.

as

// /file

define function encode @levels []chunk stream
for Q@level uint
@chunks = @levels at Qlevel // read chunk stream
@crs = context crs //
O@m = branches (- Qcrs parities if Qcrs)
@parent = read Om from @chunks // 7read up to m chunks from

stream blocking

(append crs/extend with Qcrs parities if @crs)

each chunk/store
reference
join as chunk

// package children

if @levels length == Qlevel+1l then
@levels append= stream{}
go self Q@levels for Qlevel+1l

write @parent to Qlevels at Qlevel+l

1f no @chunks then

close Q@levels at Q@level + 1

else
self Q@chunks for Qlevel

define function split @data byte stream

as

@level = chunk stream{}

go @data each chunk size as chunk

write to Q@chunks
Q@level

define function upload byte stream as @data
has api POST on "file/" from @data as body

as

@levels append= @data split

go encode Qlevels for O

O@top = 0@levels cach wait fo
close

return Qtop at O

r

o7
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// wait for all levels to

// return root hash as

5@00\]030"%03[\9

— =
DN =

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38



address

Definition 76 — File API: download/retrieval.

// /file
define function copy @reader stream byte{}
@chunks stream [] chunk
O@buffers stream [@buffer.size]lstream
chunk
@Qchunks = read Q@buffers no Q@chunks

@chunk = read @chunks
no @chunk

write @chunks Q@buffer
self Q@reader @buffers
write @Q@chunk data @reader

define function download reference

[branches]

? Q@Qbuffer.size uint64
has api GET "file/<reference>"

@reader = stream byte{}

@buffers = stream [@buffer.size]stream [branches]
chunk

chunk/retrieve Q@reference // rToot chunk
retrieval

decode Qbuffer 1 // traverse
copy O@reader Obuffers

define function decode chunk
@response chunk stream

? @limit uint$8
@crs = context crs
@all = @m = branches
O@crs
Om -= Qcrs parities
O@crs strategy is not "race"
@all = @m
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O@chunks = Q@chunk segments Gall
reference retrieve

wait @m Q@Qchunks
Qcrs
cancel Q@chunks
@chunks = @chunks crs/repair

O@crs parities

@chunk span < chunk size exp 0Q@limit + 1

@chunks @reader

Q@Qchunks self @limit

Definition 77 — File info.

// /file
define type info
mode int64
size int64
modified time

2.5.2 Manifests

Manifests represent a mapping of strings to references. The primary purpose is to implement
document collections (websites) on swarm and enable URL-based addressing of content. This
section defines the data structures relevant for manifests as well as the algorithms for lookup

and update which implement the manifest API (see 77).

A manifest entry can be conceived of as metadata about a file pointed to and retrievable
by its reference (see 2.5.1). The metadata is quite diverse, ranging from information needed
for access control, file information similar to one given on file systems, information needed
for erasure coding (see 77 and 2.1.1), information for browser, i.e., response headers such as
content type (MIME info) and most importantly the reference to the file. Using manifests as
simple key-value store is exemplified by access control (see 2.6 and ?? for the specification).

Definition 78 — Manifest entry.
// /mantfest
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// mantifest entry encodes attributes
define type entry

file/info // FS file/dir info
access/params // access control params
crs/params // erasure coding - CRS params
reference // reference

headers // http response headers

define type headers
content.type [segment sizel]byte

Definition 79 — Manifest data structure.

// /manifest

define type node

entry *entry // reference to chunk serialised as
entry
forks [<<256]fork // sparse array of maxz 256 fork

// fork encodes a branch
define type fork
prefix segment // compaction
node xnode // reference to chunk serialised as node

Definition 80 — Manifest API: path lookup.
// /manifest

define function lookup @path []byte
in *node
has api GET on "/manifest/<@node:reference>/<Q@path>"
as
context access = Qnode entry access/params
// mantifest its a compacted trie
@fork = @Onode forks at head @path
// if @path empty, the paths matched return the entry
if no @path then
return Onode entry

if @fork prefix is prefix of @path then // 2ncluding
return self @path from @fork prefix length

60
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in @fork node
fail with "not found"

Definition 81 — Manifest API: update.
// /manifest

define function add *entry
to *node
on @path [Jbyte
has api PUT on "/manifest/<Q@node>"

as
// if called on nil call on zero walue
O@node = node{} if no @node

// tf empty path then change entry field of node
if no @path then

OGnode entry = Qentry

return store G@node

// lookup the fork based on the first byte of path
@fork = @node forks at head @path
// if mo fork yet, add the singleton node
if no @fork then
OGnode forks at head @path =
fork{@path, store node{@entryl}
return store @node

@Qcommon = prefix of @path and Q@fork prefix // common cannot
be empty
@rest = Q@fork prefix from @common length
@newnode = node{}
O@newnode forks at head Q@rest = fork{@rest, @fork node}
Omidnode = self Qentry to @newnode on @path from @common
length

@node forks at head Q@path = fork{ @common, @midnode }
@node store

Definition 82 — Manifest API: remove.
// /mantifest
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define function remove @path []Jbyte
from *node
has api DELETE on "/manifest/<@node>/<Q@path>"
as
// tf called on ntl call on zero wvalue
return node{} if no @node

© 00 N O T = W N

// if empty path thenm change entry field of node 10
if no @path then 11
return nil if @node forks length == 0 12
O@node entry = nil //entry exzists 13
return store @node 14
15
// lookup the fork based on the first byte of path 16
@fork = @node forks at head @path 17
// if mo fork yet, add the singletomn node 18
return @node 1f no Q@fork 19
20
Qcommon = prefix of @path and Q@fork prefix // common cannot 21
be empty
return Onode 1if Q@common and Q@fork prefix have different 22
length // path not found
23
@rest = Q@fork prefix from @common length 24
Onewnode = self Qrest from Q@fork node 25
if no @newnode then // deleted item was terminal 26
node, delete fork
Onode forks at head Qres = nil 27
else 1f @newnode forks length == 1 then // compact non- 28
forking nodes
O@singleton = @newnode forks first 29
Onewprefix = Q@common append @singleton prefix 30
OGnode forks at head @path = 31
fork{ @newprefix, @singleton node } 32
else 33
OGnode fork at head @path node = @newnode 34
35
OGnode store 36

Definition 83 — Manifest API: merge.

62



// /manifest

define function merge 0@new *node
@old *node
has api POST "/manifest/<@old:reference>/<@new:reference>"

// if called on nil call on zero walue
return Onew no Q@old

return Qold no GQnew

@node = node{ @new or Gold }

OGnew forks pos or @old forks pos

bit @pos

@fork = merge.fork Q@new forks Q@pos
@old forks Q@pos

Gnode forks @fork prefix head = Q@fork

@node store

define function merge.fork Q@new fork
@old fork

@common = prefix Onew prefix and @old prefix
O@restnew = Onew prefix @Gcommon length
O@restold = Qold prefix @common length
no Orestnew and no Qrestold
return fork{@common, merge.node Q@new reference @old
reference’}

Onode = add O@new reference nil O@restnew

add @old reference Qrestold
fork{ @common, @node }

2.5.3 Resolver

Definition 84 — Resolver.
// /resolver

define type resolver
api url
address ethereum/address
tlds []lstring
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define function resolve @host []byte through Q@resolver

@tld = Qhost split AN
tlds = 0tld

last

ethereum/call "getContentHash"

Q@resolver address
address

2.5.4 Pinning

Definition 85 — Pinning.
// /pin

define type pin
reference
chunks uint64

define function list
return []pin
has api GET "/pin/"

define function view reference
return uint64
has api GET "/pin/<reference>"

define function pin reference
return uint64
has api PUT "/pin/<reference>"

define function pin reference
return uinté64

has api DELETE "/pin/<reference>"

2.5.5 Tags

64

@resolver

@host

@resolvers

@resolver api
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Definition 86 — Tags.

// /tag

define type tag

id [segment size]byte
the current root
1f local upload finished

reference

complete bool
total wuint64
split wuint64
stored uint64
seen uint64
sent uint64
synced uint64

//
//
//
//
//
//
//
//

define function 1list

return []tag

has api GET "/tag/"

number
number
number
number
number
number

of
of
of
of
of
of

define function view reference

return uint64

has api GET "/tag/<reference>"

define function add reference

return uint64

has api POST "/tag/"

chunks
chunks
chunks
chunks
chunks
chunks

define function remove reference

return uint64

has api DELETE "/tag/<reference>"

2.5.6 Storage

Definition 87 — Public storage API.

// /bzz

expected

split

stored locally
already in db

sent with push-sync
synced

define function upload @data stream of byte
has api POST on "bzz:/<host>/<path>"

as

@root = resolver/resolve Qhost

65
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@manifest = access/unlock Qroot

@entry = file/upload @data

@reference = chunk/store Qentry as []byte
manifest/add @reference to @manifest on @path

define function download @path []byte from @host []byte
has api POST on "bzz:/<host>/<path>" from @data as body

as

@root = resolver/resolve Qhost
@manifest = access/unlock Qroot
@entry = manifest/lookup @path in G@manifest
file/download Q@entry reference

2.6 Access Control

Definition 88 — Access control: auth, hint, parameters, root access manifest.

// /access

define type auth as "pass"|"pk"
define type hint as [segment size]byte

// access control parameters
define type params

auth // serialises uint8

publisher crypto/pubkey // 65 byte

salt // salt for scrypt/dh

hint // hint to link <dentity

act *node // reference to act manifest
root

kdf // params for scrypt

// root access mant fest
define type root

params
reference
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Definition 89 — Session key and auth with credentials.

// /access

define function session.key.pass hint
salt
kdf

crypto/scrypt input/password @hint
@salt Qkdf

define function session.key.pk hint
crypto/pubkey
salt

crypto/shared.secret
input/select key @hint

and Q@pubkey

hash @salt

define function session.key

params
O@params auth == "pass"
return session.key.pass O@params hint
OGparams salt @params kdf
session.key.pk O@params hint
@params publisher O@params salt

Definition 90 — Access key.

// /access
define function access.key
params
Q@key = session.key @params
return Qkey no @params act
act.lookup GQkey @params act

define function act.lookup key
Qact *node
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manifest/lookup hash @key and O
Qact
xor hash Q@key and 1

Definition 91 — Access control API: lock/unlock.
// /access

// control
define function lock reference
params
has api POST "/access/<address>"
O@params body

Qkey = hash Qreference address and Qkey
@encrypted = Q@reference bytes
crypto/crypt Qkey
root{ @params, Q@encrypted }
store

define function unlock address
has api GET "access/<address>"

O@root = retrieve Qaddress
root return Qaddress
@key = access.key @root params
@root encrypted crypto/crypt Qkey
*node

Definition 92 — ACT manipulation API: add/remove.
// /access

define type act manifest/node

define function add Qkeys []crypto/pubkey

*root
has api PUT "/access/<root>/"
Qkeys body

// get params from the root access structure
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@params = retrieve Qroot root params
Qaccess.key = access.key Oparams
Qkeys Qkey
@session.key = session.key @params
manifest/add @access.key xor hash @session.key 1
Qact hash @session.key 0

define function remove Qkeys []Jcrypto/pubkey

*root
has api DELETE "/access/<root>"
Qkeys body

// get params from the root access structure

@params = retrieve Qroot root params
Q@keys Qkey
Osession.key = session.key @params
manifest/remove hash @session.key 0

O@params act

2.7 PSS

2.7.1 PSS message

2.7.2 Direct pss message with trojan chunk

Pss has two fundamental types, a message and a trojan chunk structure which wraps the
encrypted serialised message and contains a nonce that is mined to make the resulting chunk’s

content address (BMT hash) to match the targets
Definition 93 — Basic types: topic, targets, recipient, message and trojan.

// /pss

define type topic [segment sizelbyte //
obfuscated topic matcher

define type targets [J[]byte // overlay prefizes

define type recipient crypto/pubkey
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// pss message

define type message
seal segment
payload [!:4030]byte

// trojan chunk

// the monce

define type trojan
nonce segment
key pubkey
message [4064]byte

The message is encoded in a way that allows integrity checking and at the same time obfus-
cates the topic. The operation to package the payload with a topic is called sealing

// varlength padded to 4030B

// the monce to mine
// compressed format
// encrypted msg

Definition 94 — Sealing/unsealing the message.

// /pss

define function seal Q@payload []byte

topic

@seal = hash Opayload and Qtopic // obfuscate topic

xor @Qtopic

return messageq{ G@seal,

@payload }

define function unseal message

topic

@seal = hash Omessage payload and Qtopic

@topic == @seal xor @message seal

return @payload
return nil

// check
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Functions wrap/unwrap transform between message and trojan chunk. wrap takes an op-
tional recipient public key to asymmetrically encrypt the message. The targets are a list of
overlay address prefixes derived from overlay addresses of recipients, with length specified
to guarantee that a chunk matching it will end up with the recipient solely as a result if
push-syncing.
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Definition 95 — Wrapping/unwrapping.

// /pss
define function wrap message
recipient
targets
Omsg = @message
(crypto/encrypt @recipient @recipient)
@nonce = crypto/mine @n
Otargets is prefix
trojan{@n, Omsg} chunk address
trojan{@nonce, Qmsg} chunk

define function unwrap chunk
recipient

@chunk bytes
(crypto/decrypt Q@Qrecipient @recipient)
message

When a chunk arrives at the node, pss/deliver is called as a hook by the storage component.
First the message is unwrapped using the recipient private key and unsealed with all the
topics API clients subscribed to. If the unsealing is successful, message integrity as well as
topic matching is proven so the payload is written into the stream registered for the topic in
question.

Definition 96 — Incoming message handling.

// /pss

// mailboz ts a handler type, ezpects payload
// sent sealed with the topic to be delivered via the stream
define type mailbox

topic
deliveries stream [Jbyte
define context mailboxes [Jmailbox

define function deliver chunk
O@msg = Q@chunk unwrap context recipient

71

© 00 N O U = W N

I e e e e e
O © 00 O Ut i W N+~ O

© 00 N O T = W N

—_ = =
o = O



mailboxes each @mailbox
Opayload = unseal Omsg
if @payload then
write @msg payload

with @mailbox topic

to @mailbox deliveries

Definition 97 — pss API: send.

define function send Q@payload []byte

has

as

// /pss

about topic
for recipient
?7to targets

api POST on "/pss/<recipient>/<topic>(7targets=<targets>)"

with @payload as body

targets = lookup.targets for Qrecipient if no Qtargets

context tag = tag/tag{}
seal @payload with Q@topic
wrap for Qrecipient
recipient
to Q@targets
trojan chunk
store
return tag

Definition 98 — pss API: receive.

define function receive about topic

// /pss

on uint64 @channel

//
//

//

//
//

seal with topic
encrypt 1f given

mine mnonce and returns

to be sent by push-sync
tag to monitor status

has api POST on "/pss/subscribe/<topic>(7on=<channel>)"

as

def

Ostream = open Qchannel

context mailboxes append= mailbox{ Qtopic, @stream }

ine function cancel topic
on @channel uint64

has api DELETE on "/pss/subscribe/<topic>(?on=<channel>)"

as
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context mailboxes ch

2.7.3 Envelopes

Definition 99 — Envelope.
// /pss

define type envelope
id [segment sizelbyte
sig crypto/signature
ps postage/stamp

2.7.4 Update notifications

2.7.5 Chunk recovery

Definition 100 — Targeted delivery request.
// /targeted.delivery

define type envelope
id segment
signature crypto/signature

define function wrap address
? @key crypto
@targets []Jtarget

@key = crypto/random no Qkey
@n = crypto/mine @n
@targets is prefix

hash @n and @key account

@sig = crypto/sign hash @n and @Qaddress

Qkey
envelope{ @n, Q@sig }
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Definition 101 — Prod missing chunk notification with recovery request.
c

// /recovery
define type request

address
envelope

define function request address
@response bool

Otargets
@request = request{ @address }
@response
O@request envelope =
targeted.delivery/wrap @address Qkey Otargets
pss/send Qrequest bytes "RECOVERY" Otargets
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Appendix A

Density-based size estimation

Nodes in Swarm must utilise their full reserve capacity: nodes will potentially further repli-
cate chunks in case they have unused reserve capacity beyond storing their share necessary
for a system-wide level of redundancy required. To incentivise this, participating in the
redistribution game involves a check called proof of resources which is supposed to verify
the size of reserve from which the reserve samples are generated. The insight here is that
the sample is the lowest range of a uniformly random variate over the entire 256-bit address
space. Intuitively, the higher the original volume of the sampled set, the denser it is, the
lower the expected maximum value in the sample. Conversely, a constraint on the maximum
value of the last element in the sample practically puts a minimum cardinality requirement
on the sampled set using a solution called density based set size estimation.

We are given n independent, uniformly distributed values between 0 and 1.! Let the value
of the kth smallest of these be x} (so the smallest of the n values is x1, the second smallest is
xg, and so on, up to z,,). What is the distribution of xy, given n? And what is the threshold
value u such that for any given probability «, the chance of obtaining an z; lower than w is
a?

Note that the distance between any two adjacent values out of n independent uniform variates
follows an exponential distribution, as long as n is sufficiently large.? The rate parameter
of this exponential distribution is n + 1, where n is increased by one to account for the fact

'Because we work with densities, the actual integer range is not relevant and results obtained for the unit
interval can simply be rescaled to the Swarm use case by multiplying with 22°6.

2This follows from the fact that n independent uniform variates can be thought of as realizing a Poisson
process, whereby the timing of events is random, and it is known that the nearest-neighbour distribution
(i.e., waiting time between two consecutive events) is then exponentially distributed.
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that the expected gap between adjacent values is 1/(n + 1).3

We are after the distribution of the kth value, * x;, which then can be thought of as arising
from the sum of £ independent exponential variables, each with a rate parameter of n 4 1.
This is known to result in an Erlang distribution with shape parameter k£ and rate parameter
n+ 1. Using X (\) to denote the exponential distribution with rate A and E(k, A) to denote
the Erlang distribution with shape k£ and rate \:

k
> Xin+1)=E(k,n+1), (A1)
i=1

where the subscript 7 in X;(n + 1) distinguishes between independent exponentially dis-

tributed random variables. The probability density function E(z,k,n + 1) of the Erlang
distribution itself is given by

(7’L+ 1)kxkflef(n+1):p
(i— 1)

E(z,k,n+1) = (A.2)

This distribution contains the answer to the first question: what is the distribution of the
kth smallest value out of n independent uniform variates between 0 and 17 For example, if
k = 16 and n is either 500, 750, or 1000, we get the distributions shown in Figure A.1.

We can now answer the second question: given n and a confidence level «, what is the
threshold value u for z, such that the probability that x; < wu is equal to a? That is, we
wish to know the value = u at which the probability distribution has encompassed a given
area of «v (see figure A.2).

The area under the curve of the Erlang distribution is given by its cumulative distribution
function P(x,k,n + 1), which is known to be

x 1 (n+1)x
P(LIZ', k,n + 1) = /0 E(y, k’, n + 1) dy = W/O tkileit dt. (A3)

The latter expression is sometimes written as 4(k, (n + 1)x), where

F(k,x) = ﬁ /Ox th=le=t dt (A.4)

3For n = 2, the mean outcome is 71 = 1/3 and xo = 2/3; for n = 3, it is 21 = 1/4, x5 = 2/4, x3 = 3/4;
and so on: for arbitrary n, x; = i/(n + 1), with the gap between adjacent values in this ideal case always
being 1/(n + 1).

4An alternative approach using order statistic expresses xj via a beta distribution. It is very difficult
to prove that the Beta distribution’s quantile function is a strictly decreasing function of n, which is a key
piece of the argument presented here. Although this method is exact even for small n, in our case, n always
a very large number, therefore we adopted the other method.
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Figure A.1: Probability density function E(x,k,n + 1) of the Erlang distribution, with k£ = 16 and
n either 500, 750, or 1000.
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Figure A.2: The distribution of x4, i.e., the 16th smallest value from among n = 500 independently
and uniformly drawn variates between 0 and 1. The area under the curve is shaded up to 5% of its
area. The point at which the shading stops is therefore the value u for which there is only a 5% chance
of getting an even smaller z¢.

is the regularized lower incomplete gamma function. We therefore want to solve the equation
a:/ E(y,k,n+1)dy = P(u,k,n+ 1) (A.5)
0
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for w.

Inverting this expression in u (since the cumulative distribution function increases mono-
tonically in u, the inverse exists) leads to the quantile function Q(«, k,n + 1) of the Erlang
distribution: u = Q(a, k,n + 1). The quantile function is known to be expressible as

-1
Qo kot =" 10D (A.6)

where ¥7!(k, x) is the inverse regularized lower incomplete gamma function. Its particular
form is of no interest to us, except for two properties. First, it is positive for all .5 Second,
it is independent of n. Instead, the entire dependence of Q(«, k,n + 1) on n is given by the
n 4+ 1 term in the denominator of Equation A.6. From this, we conclude that Q(«, k,n + 1)
is a strictly decreasing function of n.

These two points lead to an important consequence. Say we compute the threshold u for
a given a and n in order to have an upper bound on a lower quantile. Now, if we were
to decrease n but hold all other things equal, the threshold will always get higher than
what it was before. The threshold obtained for higher values of n may therefore serve as a
conservative estimate of the threshold for lower values: if u is a threshold such that the kth
smallest out of n uniform variates is only smaller than u in « of cases, then for any amount
m < n, the chance of the kth variate conforming to the same constraint (i.e., z < ) is now
even smaller than «.

Conversely, if we were to constrain x; so that the probability of not getting a value smaller
than u is lower than § (minimising a higher quantile), we find that the constraint remains
true as n is increased.

Armed with these results, let us see how Equation A.6 can be used for the estimation
procedure. There are two problems to tackle, ultimately relating to the two aspects of a
test’s accuracy. First, we want to catch inadequate storers slacking on volume. In other
words, we want to constrain the z;, values so that we can safely say that any attacker with a
stored volume below an acceptable size n has a probability less than « to obtain such a small
xp by pure chance. Construing the condition for z;, < u as a test to filter honest players
(just based on the size of their reserve), 1 — o expresses the sensitivity of the test. From the
previous argument on the monotonic dependence of a on n, it is safe to use a condition that
requires xy to stay below a threshold obtained for n.

Second, we want to avoid situations when honest participants end up not satisfying the
above constraint even though they sampled from a set larger than the required minimum.
Given a target volume m > n, the error rate of false negatives is guaranteed to be less than

>This stands to reason: the quantile function of a distribution on = € [0, 0o) is itself between 0 and oo,
and 771 (k,z) is just the quantile function of the Erlang distribution times the positive constant n + 1.
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[ obtained from the quantile function with parameters m, k, and u. The quantity 1 — [ is
the specificity or precision of the test.

Figure A.3 illustrates this idea, for two different distributions in both the lower- and upper-
end estimation. What we want is to choose u to simultaneously make sure that dishonest
players do not sneak through the system and also that honest players do not get excluded
too often. This translates to make both o and 3 as small as possible.
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Figure A.3: Recall and precision of proof of reserve size validation: Any chosen u will lead to
different o and [ values, depending on n. Here u is fixed at 0.02. The top panel shows distributions
for x = 16 with n = 500 (blue) and n = 1000 (yellow). The area left under the blue curve to the
left of u is equal to a (blue shade); the area under the yellow curve right of w is equal to 8 (yellow
shade). If the curves overlap considerably (top), it is impossible to choose an u such that « and § are
simultaneously small.

One way to try and find the best compromise is by minimising o + 5 (the accuracy of the
test) and pick the u value at the optimum to be used in the proof of resources test. To
this end, one can vary o between 0 and 1 and, for each of its values, solve the equation
a=Q(1—p5,kn+1) (where n is the larger value, used for estimating 3). This way, we get
a [ value for every possible a. Then, we can find the combination which minimises a + 3,
and determine the value of u that leads to this optimum. As illustrated in figure A.4, larger
values of k yield a trade-off curve along which better accuracies can be achieved.
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Figure A.4: Optimal accuracy of reserve size probe By increasing k, one can get better optima for
minimising o + 3. Here n = 106 for estimating o and 2 - 10% for estimating 3, and k is either 8, 16,

or 32 (colors). The values of u associated with the optima are also shown.

Table A.1 summarizes the important numerical results in Figure A.4.°

k a B u u - 22°6

8 0.196216 0.1373622 5.54589-107¢ 6.421705- 107
16 0.097612 0.0716570 1.10923 -107° 1.284401 - 10™
32 0.029386 0.0219151 2.21962-107° 2.570140 - 107

Table A.1: Proof of density parameter calibration. Assuming n = 10% and m = 2 - 10° to calculate
recall and precision error rates « and [, respectively, the cutoff value for the proof is calibrated by

optimizing on acccuracy using sample sizes 8, 16, 32.

6Since the hash function used to generate random variates does so in the range [0, 2256 — 1] instead of
[0, 1], the calculated thresholds are scaled with 2256 to show where they would fall in their actual range.
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Appendix B

Source of randomness

As the neighbourhood selection anchor will directly affect which neighbourhood wins the pot,
it is prudent to derive the randomness from a source of entropy that cannot be manipulated.
A common solution to obtain randomness is to have independent parties committing to
a random nonce with a stake. The random seed for a round is defined as the xor of all
revealed nonces. Given the nonces are independent sources fixed in the commit, no individual
participant has the ability to skew randomness by selecting a particular nonce. Thanks to
the commutativity of xor, the order of reveals is also irrelevant. However, if the reveal
transactions are sequential, committers compete at holding out since the last one to reveal
can effectively choose the resulting seed to be either including its committed nonce (if they
do reveal) or not (if they do not reveal). The threat to slash the stake of non-revealers serves
to eliminate this degree of freedom from last revealers and thus renders this scheme a secure
random oracle assuming there is at least one honest (non-colluding) party.!

Now note that the redistribution scheme already has a commit reveal scheme as well as
stake slashed for non-revealers, so a potential random oracle is already part of the proposed
scheme. Incidentally, the beginning of the claim phase is when new randomness is needed to
select the truth and a winner. Importantly, these random values are only needed if there is a
claim which implies that there were some commits and reveals to choose from. Or conversely,
if there are no reveals in the round,? the random seed is undefined but is also not needed for
the claim.

The random seed that transpires at the beginning of the claim phase can serve as the reserve

'If the stake is higher than the reward pot, one cannot afford being slashed with even just one commit
without a loss. If this cannot be guaranteed, slashing of the stake is not an effective deterrent.

2If saboteurs get slashed or frozen in the claim transaction, if there is no claim, the committers get away
without being punished. This can be remedied if the staking contract keeps a flag on each overlay (set when
commits, unsets when reveals in the same round) and the check and punishment happens as a result of a
commit call in the case the flag is found set.
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sample salt (nonce input to modified hash used in the sampling) with which the nodes in
the selected neighbourhood can start calculating their reserve sample.

The neighbourhood for the next round is selected by the neighbourhood selection anchor,
which is, similarly to the truth and winner selection nonces, deterministically derived from
the same random seed. Unlike the nonces used to select from the reveals, neighbourhood
selection should be well defined for the following round even if a round is skipped, i.e., when
there is no reveals. To cover this case skipped rounds keep the random seed of the previous
round. However, in order to rotate selected neighbourhoods through skipped rounds, we
derive the neighbourhood selection anchor from the seed by factoring in the number of game
rounds passed since the last reveal.?

In order to provide protection against the case when each committer in the neighbourhood
is colluding, and can afford losing stake we need to make sure that the entropy is still high
otherwise the nodes can influence the neighbourhood selection nonce and reselect themselves
or a fixed colluding neighbourhood (or increase the chances of reselection).

Definition 103 — Random seed for the round.
Define the random seed of the round as the xor of all obfuscation keys sent as part of the
reveal transaction data during the entire reveal period:

R : D'+ Nonce (B.1)
» R(Prev(y)) if | Reveals(y)| =0
R(v) = V NONCE(r)  otherwise (B.2)
" reReveals(v)

Lemma 104 — Round seed is a secure random oracle.
The nonce produced by xoring the revealed obfuscation keys is a correct source of entropy.

Proof. Assuming n independent parties committing, choosing any particular nonce will leave
the outcome fully random.

3Otherwise a selected neighbourhood could collude maliciously not to commit/reveal and have the pot
roll over to the following round. By simply holding out for a number of redistribution rounds, they could
unfairly multiply their reward when they eventually claim the pot.
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Appendix C

Parameter constants

Table C.1 lists the constants used by Swarm with their type, default value and description.

CONSTANT NAME | TYPE | VALUE | DESCRIPTION

BZZ NETWORK_ID wint64 | 0 ID of the swarm network

PHASE_LENGTH wintb4 | 38 length of commit phase of the redistribu-
tion game round in number of blocks

ROUND_LENGTH wint64 | 152 length of one redistribution game round
in number of blocks, fixed at 4 times the
PHASE LENGTH

NODE_RESERVE DEPTH | uint§ 23 size requirement for client reserve capac-
ity given in base 2 log number of chunks

SAMPLE_DEPTH wint8 4 base 2 log number of chunks in sample

MAX_SAMPLE_VALUE wint256 | 1.2844 -10™ | maximum value for last transformed ad-
dress in reserve sample, i.e., < 1% chance
the sampled set size is below a fourth of
the prescribed node reserve size.
MINIMUM_STAKE wint256 | 10 minimum stake amount in BZZ to be re-
defined as minimum stake given in stor-
age rent units

MIN_STAKE_AGE wint256 | 228 minimum number of blocks stakers need
to wait after update or creation for the
stake to be useable. Defaults to one and
a half rounds to prevent opportunistic
manipulation of stake after a neighbour-
hood is selected.
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PRICE_2X_ROUNDS

NHOOD_PEER_COUNT

uinto/

wnts

64

number of rounds it takes for the price
to double in the presence of a consistent
lowest degree signal of undersupply.
minimum number of nodes required to
form a fully connected neighbourhood.

Table C.1: Parameter constants
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