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Non-local redundancy: Erasure coding and dispersed replicas for robust
retrieval in the Swarm peer-to-peer network
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This paper presents an architecture for achieving resilient content retrieval in the Swarm decentralised storage network using erasure

coding and non-local replication. The objective is to guarantee high data availability despite partial node failure or missing chunks.

The proposed approach integrates Reed–Solomon coding into the Swarm hash tree, enabling the reconstruction of original data from a

subset of stored chunks. Parametrised redundancy schemes are introduced to meet varying reliability requirements under various

assumed rates of chunk retrieval failure. Dispersed replication of singleton chunks extends fault tolerance to edge cases. The paper

also proposes retrieval strategies that exploit redundancy to optimise latency and cost. The result is a modular and practical design for

robust file storage ideally suited for the adversarial and unreliable context of peer-to-peer decentralised networks.
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This paper is structured as follows. Section 1 introduces the role of erasure codes
1
Section 2 details the integration

of Reed–Solomon encoding into the Swarm hash tree and explains how parity chunks are incorporated at each layer.

Section 3 provides a formal framework for selecting the number of parity chunks needed to meet predefined security

thresholds, based on probabilistic failure models. Section 4 addresses the special case of single-chunk redundancy

by introducing dispersed replicas. Section 5 outlines multiple retrieval strategies tailored for erasure-coded content,

analysing their trade-offs in terms of latency, cost, and robustness before section 6 concludes.
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1
Error correcting codes that have a focus on correcting data loss are referred to as erasure codes, a typical scheme of choice for distributed storage systems

[1].
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2 Trón et al.

1 INTRODUCTION

Error correcting codes are widely utilised in the context of data storage and transfer to ensure data integrity in the

face of a system fault. Error-correction schemes define how to rearrange original data by adding redundancy to its

representation before upload or transmission, (encoding) so that corrupted data can be corrected or missing content

recovered upon retrieval or reception (decoding). The different schemes are evaluated by quantifying their strength

(tolerance, in terms of the rate of data corruption and loss) as a function of their cost (overhead, in terms of storage and

computation).

Specifically in the field of computer hardware architecture, synchronising arrays of disks is crucial for providing

resilient storage in data centres.

In erasure coding, however, the problem can be framed as follows: How does one distribute data into shards stored

across the physical disks of an array or the physical nodes of a server cluster so that the data remains fully recoverable

in the face of an arbitrary probability that any one or more physical carriers become faulty?

Similarly, in the context of Swarm’s distributed immutable chunk store, DISC, the problem can be reformulated as

follows: How does one encode the stored data into chunks distributed across neighbourhoods2 in the network so that

the data remains fully recoverable in the face of an arbitrary probability that any one chunk is not retrievable?
3

Reed-Solomon coding (RS) [2, 5, 8, 9] is the father of all error correcting codes (ECC) and also the most widely used

and implemented.
4
When applied to data of𝑚 fixed-size blocks (message of length𝑚), it produces an encoding of𝑚 + 𝑘

codewords (blocks of same size) in such a way that obtaining any𝑚 out of𝑚 + 𝑘 blocks is enough to reconstruct the

original data. Conversely, 𝑘 puts an upper bound on the number of erasures allowed (the number of unavailable blocks)

for full recoverability, i.e., it expresses (the maximum) loss tolerance.

𝑘 is also the count of parities, quantifying the data blocks added during the encoding on top of the original count of

blocks, in other words, it expresses the storage overhead. While RS is optimal for storage (since loss tolerance cannot

exceed the storage overhead), it has high bandwidth demands
5
for local repair processes.

6
The decoder needs to retrieve

𝑚 chunks to recover a particular unavailable chunk. Hence, ideally, RS is used on files which are supposed to be

downloaded in full,
7
but it is inappropriate for use cases needing only local repairs.

8

When using RS, it is customary to use systematic encoding, which means that the original data forms part of the

encoding, with the parities added to it.
9

2 ERASURE CODING IN THE SWARM HASH TREE

Swarm uses the Swarm hash tree to represent files. This structure is a Merkle tree [6], whose leaves constitute the

consecutive segments of the input data stream. These segments are turned into chunks and are distributed among the

Swarm nodes for storage. The consecutive chunk references (either in the form of an address or an address and an

encryption key) are written into a chunk at a higher level. These so-called packed address chunks (PACs) constitute

the intermediate chunks of the tree. The branching factor 𝑏 is chosen so that the references to its children fill up a

2
Neighborhoods are groups of nodes which are responsible for sharing the same chunks.

3
We will assume that the retrieval of any one chunk fails with equal and independent probability.

4
For a thorough comparison of an earlier generation of implementations of RS, see Plank et al. [7].

5
Both the encoding and the decoding of RS codes takes𝑂 (𝑚𝑘 ) time (with𝑚 data chunks and 𝑘 parities). However, we found computational overhead

both insignificant for a network setting, as well as undifferentiating.

6
Entanglement codes [3, 4] require a minimal bandwidth overhead for a local repair, but at the cost of storage overhead that is in the multiples of 100%.

7
Or in fragments large enough to include the data span over which the encoding is defined, such as videos.

8
E.g., Use cases requiring random access to small amounts of data (e.g., path lookups) benefit from simple replication, instead of RS, to optimise on

bandwidth. Replication is, of course, suboptimal in terms of storage [10].

9
Our library of choice implementing exactly such a scheme is https://github.com/klauspost/reedsolomon.
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Non-local redundancy: Erasure coding and dispersed replicas for robust retrieval in the Swarm peer-to-peer network3

full chunk. With a reference size of 32 or 64 (hash size 32) and a chunk size of 4096 bytes, the value of 𝑏 is 128 for

unencrypted, and 64 for encrypted content (Figure 1).

root hash

ℎ1 ℎ2 ℎ3 · · · ℎ128

ℎ1
1

ℎ1
2

· · · ℎ1
128

ℎ2
1

ℎ2
2

· · · ℎ2
128

· · ·

chunk 1 chunk 2 · · · chunk 129 · · · chunk N

Fig. 1. The Swarm tree is the data structure encoding how a document is split into chunks.

Note that on the right edge of the hash tree, the last chunk of each level may be shorter than 4K: in fact, unless the

file is exactly 4 · 𝑏𝑛 kilobytes long, there is always at least one incomplete chunk. Importantly, it makes no sense to

wrap a single chunk reference in a PAC, so it is attached to the first level where there are open chunks. Such "dangling"

chunks will appear if and only if the file has a zero digit in its 𝑏-ary representation.

During file retrieval, a Swarm client starts from the root hash reference and retrieves the corresponding chunk.

Interpreting the metadata as encoding the span of data subsumed under the chunk, it decides that the chunk is a PAC if

the span exceeds the maximum chunk size. In case of standard file download, all the references packed within the PAC

are followed, i.e., the referenced chunk data is retrieved.

PACs offer a natural and elegant way to achieve consistent redundancy within the Swarm hash tree. The input data

for an instance of erasure coding is the chunk data of the children, with the equal-sized bins corresponding to the chunk

data of the consecutive references packed into it. The idea is that instead of having each of the 𝑏 references packed

represent children, only𝑚 would, and the rest of the 𝑘 = 𝑏 −𝑚 would encode RS parities (see Figure 2).

The chunker algorithm that incorporates PAC-scoped RS encoding would work as follows:

(1) Set the input to the actual data level and produce a sequence of chunks from the consecutive 4K segments of

the data stream. Choose𝑚 and 𝑘 such that𝑚 + 𝑘 = 𝑏 is the branching factor (128 for unencrypted, and 64 for

encrypted content).

(2) Read the input one chunk at a time. Count the chunks by incrementing a counter 𝑖 .

(3) Repeat Step 2 until either 𝑖 =𝑚 or there is no more data left.

(4) Use the RS scheme on the last 𝑖 ≤ 𝑚 chunks to produce 𝑘 parity chunks resulting in a total of 𝑛 = 𝑖 + 𝑘 ≤ 𝑏

chunks.

Manuscript submitted to ACM
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4 Trón et al.

(5) Concatenate the references of all these chunks to result in a packed address chunk (of size ℎ · 𝑛) on the level

above. If this is the first chunk on that level, set the input to this level and spawn this same procedure from Step

2.

(6) When the input is consumed, signal the end of input to the next level and quit the routine. If there is no next

level, record the single chunk as the root chunk and use the reference to refer to the entire file.

𝐻 Swarm root hash

𝐻0

𝐻0

𝐻0

𝐻0

𝐶0

𝐻1

𝐶1

𝐻111 𝑃0 𝑃15

𝐻1 𝐻111 𝑃0 𝑃15

𝐻1 𝐻111 𝑃0 𝑃15

𝐻1 𝐻111

𝐻0 𝐻1 𝐻111

𝐻0 𝐻1 𝐻111

𝐻0 𝐻1 𝐻111

𝐶𝑚

𝑃0 𝑃15

𝑃0 𝑃15

𝑃0 𝑃15

𝑃0 𝑃15. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...

...

. . . . . .. . .

. . . . . .

. . . . . .

Fig. 2. The Swarm tree with extra parity chunks using𝑚 = 112 out of 𝑛 = 128 RS encoding. Chunks 𝑃0 through 𝑃15 are parity data

for chunks 𝐻0 through 𝐻111 on every level of intermediate chunks.

This pattern repeats itself all the way down the tree. Thus, hashes 𝐻𝑚+1 through 𝐻127 point to parity data for chunks

pointed to by 𝐻0 through 𝐻𝑚 .
10

3 LEVELS OF SECURITY AND THE NUMBER OF PARITIES

Non-local redundancy is presented here as a scheme of encoding that allows strategies of retrieval in order to guarantee

data availability. With packed address chunks set as the scope of erasure codes, it is crucial that we use the right

number of shards and parities among the children of an intermediate node in the Swarm hash tree representing a file.

Given assumptions about chunk retrieval error rates and the number of parities used, one can calculate the degree

of certainty that the data can be recovered without error. One can even apply the same logic backwards: given some

level of certainty with which we want recovery to be error-free, we can compute how many parities should be used to

provide that level of safety. In what follows, we give a formal exposition of how to find these parity counts.

Let there be𝑚 original chunks and 𝑘 parity chunks, such that any𝑚 chunks out of the total 𝑛 =𝑚 + 𝑘 ones are fully

recoverable after the loss of any 𝑘 of them. In the process of retrieving the 𝑛 chunks, what is the likelihood of overall

data corruption, given a per-chunk probability of error 𝜖?

By “overall data corruption”, we mean that more than 𝑘 chunks are damaged in the data retrieval process. We assume

that each chunk’s probability of error is independent of other chunks. In that case, the problem boils down to the

independent drawing of 𝑛 chunks, each of which undergo a Bernoulli trial of being faulty with probability 𝜖 . The total

number of faulty chunks out of 𝑛 independent Bernoulli trials is given by the binomial distribution:

𝐵(𝑖, 𝑛, 𝜖) =
(
𝑛

𝑖

)
𝜖𝑘 (1 − 𝜖)𝑛−𝑖 . (1)

10
Since parity chunks 𝑃𝑖 do not have children, the tree structure does not have uniform depth.
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Non-local redundancy: Erasure coding and dispersed replicas for robust retrieval in the Swarm peer-to-peer network5

This expression is the probability mass function for the binomial distribution, yielding the probability that out of 𝑛

chunks, exactly 𝑖 will be faulty—assuming that the per-chunk probability of error is 𝜖 .

Since there are 𝑘 parities out of the 𝑛 chunks, the system can tolerate up to 𝑘 chunk errors. The probability that no

more than 𝑘 errors accumulate can be expressed by summing Equation 1 over 𝑖 up to 𝑘 :

𝑃 (𝑘, 𝑛, 𝜖) =
𝑘∑︁
𝑖=0

(
𝑛

𝑖

)
𝜖𝑘 (1 − 𝜖)𝑛−𝑖 , (2)

which is the cumulative distribution function of the binomial distribution.

One typical question is the following: given the number of chunks 𝑛 and a value 𝛼 such that we want the overall

probability of data corruption to be below this value, how many out of the 𝑛 chunks should be parities? Since 𝑃 (𝑘, 𝑛, 𝜖)
is the probability that no more than 𝑘 errors accumulate, 1 − 𝑃 (𝑘, 𝑛, 𝜖) is the probability of more than 𝑘 errors; i.e., that

at least 𝑘 + 1 errors accumulated and therefore the data are corrupted. We want to keep this probability below 𝛼 , so we

can write

𝛼 ≥ 1 − 𝑃 (𝑘, 𝑛, 𝜖). (3)

Rearranging, we have

1 − 𝛼 ≤ 𝑃 (𝑘, 𝑛, 𝜖). (4)

That is, we are looking for values of 𝑘 which will satisfy this inequality (Figure 3). This can be obtained by inverting

the cumulative distribution function in 𝑘 , resulting in the quantile function 𝑄 (1 − 𝛼, 𝑛, 𝜖). While this inverse has no

convenient closed-form expression, it can be efficiently evaluated numerically for any set of input parameters. As with

any cumulative distribution function, 𝑃 (𝑘, 𝑛, 𝜖) is monotonically increasing in 𝑘 . Applying the inverse on both sides of

Equation 4 therefore does not flip the direction of the inequality, and gives 𝑘 ≥ 𝑄 (1 − 𝛼, 𝑛, 𝜖). Or if we look for the

smallest 𝑘 satisfying this condition:

𝑘 = 𝑄 (1 − 𝛼, 𝑛, 𝜖) . (5)

This is the formula yielding the minimum number of required parities to keep the overall probability of data corruption

below 𝛼 .

Figure 4 presents the number of parities needed as a function of error rate for various levels of security. Figure 5

presents the number of parities needed to keep the probability of overall data corruption at a given level for various

values of the per-chunk error rate.

The same type of problem can also be phrased slightly differently: given a number of chunks 𝑛, how many parities

𝑘 should be added to them to keep the overall data corruption probability below some level 𝛼? In this case, the total

number of chunks is 𝑛 + 𝑘 (instead of having 𝑛 chunks, out of which 𝑘 are parities), and so Equation 5 is modified to be

𝑘 = 𝑄 (1 − 𝛼, 𝑛 + 𝑘, 𝜖) . (6)

While this equation has no closed-form solution for 𝑘 , one can easily find the 𝑘 satisfying it as long as 𝑘 is bounded in

a relatively small range. In our case, the maximum number of chunks, 𝑛 + 𝑘 , is 128, and so 𝑘 is at most 128 − 𝑛. This

makes it simple to find the value of 𝑘 compatible with Equation 6. The number of parities in Tables 1-3 were obtained

using this method.

In principle, the exact parity counts can be made user-configurable. However, to make non-local redundancy a

transparent and easy-to-use feature, we opted for a simplified yet intuitive interface. First of all, we set our maximum

tolerated error rate of integrity at 10
−6
, in other words our security constant expressing our certainty at 6 nines,

Manuscript submitted to ACM
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Fig. 3. The point at 𝑘 = 17 along the binomial distribution, where the probability of exceeding this many errors becomes less than

𝛼 = 10%. Here, the total number of chunks is 𝑛 = 128, and the per-chunk error rate is 𝜖 = 0.1.

n = 64 n = 128
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Fig. 4. The number of parities needed (ordinate) as a function of the per-chunk error rate 𝜖 (abscissa), for keeping the probability of

overall data corruption below given limits (colours) and for 𝑛 = 64 chunks (left panel) and 𝑛 = 128 chunks (right panel).

99.9999%. Second, we propose to use a handful of named security levels of (non-local) redundancy which correspond to

assumptions about the maximum error rates of individual chunk retrievals expressed as discrete percentages. Table 1

lists the security levels with the corresponding assumption about the maximum error rate of chunk retrieval.

If the number of file chunks is not a multiple of𝑚, it is not possible to proceed with the last batch in the same way as

the others. We propose that we encode the remaining chunks with an erasure code that guarantees at least the same

Manuscript submitted to ACM
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n = 64 n = 128
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Fig. 5. The number of parities required (ordinate) to keep the probability of overall data corruption at a given level (abscissa), for

various values of the per-chunk error rate 𝜖 (colours) and for 𝑛 = 64 chunks (left panel) and 𝑛 = 128 chunks (right panel).

Table 1. Security levels for non-local redundancy UI and corresponding assumptions about uniform and independent error rates of

individual chunk retrieval. In subsequent columns we specify the composition of full chunks for the security levels for unencrypted

(columns 4 and 5) and encrypted (columns 6 and 7) content.

security error rate

of chunk retrieval

unencrypted encrypted

level name chunks parities chunks parities

0 none 0% 128 0 64 0

1 medium 1% 119 9 59 9

2 strong 5% 107 21 53 21

3 insane 10% 97 31 48 31

4 paranoid 50% 38 90 19 90

level of security as the others.
11

Overcompensating, we still require the same number of parity chunks even when there

are fewer than𝑚 data chunks. However, we can also just calculate the necessary parities for all possible incomplete

chunks and security levels. Figure 6 plots the number of parities against the number of chunks required:

Tables 2 and 3 show the number of chunks that are maintainable for a given number of parities 𝑘 across various

security levels. Since encrypted chunks are referenced with the hash address followed by the decryption key, an

encrypted reference takes up 2 hash-sized segments. Parity chunks added to an encrypted PAC, however, are calculated

based on the encrypted shards and are themselves not encrypted, hence their references only use a single hash. Thus,

the number of effective hash-sized segments used is obtained as twice the number of chunks plus the number of parities.

Since this can be an odd number and less than 128, in some security levels even the full chunks are not completely full.

As a final note, one should keep in mind that the probability of a failed data retrieval, 𝛼 = 10
−6
, is not the same as

the probability of a failed file retrieval. This is because 𝛼 is only valid for one 128-chunk segment (64-chunk segment for

encrypted content) of a file, not a file as a whole in general. Assuming that retrieval errors may occur independently to

any chunk, we can use 𝛼 and the size of a file to calculate the probability that a file as a whole is successfully retrieved.

11
Note that this is not as simple as choosing the same redundancy. For example, a 50-out-of-100 encoding is much more secure against loss than a

1-out-of-2 encoding, even though the redundancy is 100% in both cases.
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Fig. 6. Number of chunks (abscissa) and the corresponding required number of parities (ordinate) such that will maintain the same

overall probability of no data corruption as would be the case with 128 chunks, an original number of parities indicated by the colours,

and a likelihood 𝜖 of an erroneous retrieval of a single chunk indicated in the panel headers.

This probability is 1 − 𝛼 for each 128-chunk segment of a file, so if a file consists of 𝑠 128-chunk segments, then the

probability is (1−𝛼)𝑠 . In terms of bytes: a file of 𝑔 bytes consists of 𝑔/212 chunks (because 212 bytes is 4KB), which then

make up for 𝑠 = 𝑔/(212 · 27) 128-chunk segments (because 128 = 2
7
). This means that the probability 𝑃𝐹 of a successful

file retrieval is

𝑃𝐹 = (1 − 𝛼)𝑔/2
19

, (7)

an exponentially decreasing function of the file size 𝑔. For example, a file of 1GB (𝑠 = 2
30

bytes) with 𝛼 = 10
−6

has

𝑃𝐹 = 0.998, for a failure probability of 1 − 𝑃𝐹 = 0.2%.

4 DISPERSED REPLICAS

This leaves us with only one corner case: it is not possible to use our𝑚-out-of-𝑛 scheme on a single chunk (𝑚 = 1)

because it would amount to 𝑘 + 1 copies of the same chunk. The problem is that copies of the same chunk all have the

same hash and therefore are automatically deduplicated. Whenever a single chunk is left over (𝑚 = 1) (i.e., the root

chunk itself), we would need to replicate the chunk in a way that (1) ideally, the replicas are dispersed in the address

space in a balanced way, yet (2) their addresses can be known by retrievers who ideally only know the reference to the

original chunk’s address.

Our solution uses Swarm’s special construct, the single owner chunk (SOC; Figure 7). Replicas of the root chunk are

created by making the chunk data the payload of a number of SOCs. The addresses of these SOCs must be derivable

from the original root hash following a deterministic convention shared by uploaders and downloaders.
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Table 2. The number of parities (first column in each table) to be appended to a given number of chunks (second and third column of

each table, given as a range) so that the probability of an unsuccessful data retrieval remains below 𝛼 = 10
−6
. The second column

is for unencrypted chunks, while the third one is for encrypted chunks. The tables are for security levels 1-3, to be continued for

security level 4 in Table 3.

medium

parities

chunks

unencrypted encrypted

2 1 -

3 2-5 1-2

4 6-14 3-7

5 15-28 7-14

6 29-46 14-23

7 47-68 23-34

8 69-94 34-47

9 95-119 47-59

strong

4 1 -

5 2-3 1

6 4-6 2-3

7 7-10 3-5

8 11-15 5-7

9 16-20 8-10

10 21-26 10-13

11 27-32 13-16

12 33-39 16-19

13 40-46 20-23

14 47-53 23-26

15 54-61 27-30

16 62-69 31-34

17 70-77 35-38

18 78-86 39-43

19 87-95 43-47

20 96-104 48-52

21 105-107 52-53

insane

parities

chunks

unencrypted encrypted

5 1 -

6 2 1

7 3 1

8 4-5 2

9 6-8 3-4

10 9-10 4-5

11 11-13 5-6

12 14-16 7-8

13 17-19 8-9

14 20-22 10-11

15 23-26 11-13

16 27-29 13-14

17 30-33 15-16

18 34-37 17-18

19 38-41 19-20

20 42-45 21-22

21 46-50 23-25

22 51-54 25-27

23 55-59 27-29

24 60-63 30-31

25 64-68 32-34

26 69-73 34-36

27 74-77 37-38

28 78-82 39-41

29 83-87 41-43

30 88-92 44-46

31 93-97 46-48

The address of a SOC is the hash of its ID and the Ethereum address of its owner. In order to create valid SOCs,

uploaders need to sign the SOC with the owner’s identity, therefore the owner of the SOC must be a consensual identity

with their private key publicly revealed.
12

The other component of the address, the SOC ID, must satisfy two criteria: (1) it needs to match the payload hash up

to 31 bytes and (2) it must provide the entropy needed to mine the overall chunk into a sufficient number of distinct

neighbourhoods. (1) is added as a validation criterion for the special case of replica SOCs, while (2) takes care that we

can find replicas uniformly dispersed within the address space. This construct is called dispersed replica:

12
This has the added benefit that third parties can also upload replicas of any chunk.
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Table 3. As Table 2, but for the paranoid security level.

paranoid

parities

chunks

unencrypted encrypted

19 1 -

23 2 1

26 3 1

29 4 2

31 5 2

34 6 3

36 7 3

38 8 4

40 9 4

43 10 5

45 11 5

47 12 6

48 13 6

50 14 7

52 15 7

54 16 8

56 17 8

58 18 9

59 19 9

paranoid (continued)

parities

chunks

unencrypted encrypted

61 20 10

63 21 10

65 22 11

66 23 11

68 24 12

70 25 12

71 26 13

73 27 13

75 28 14

76 29 14

78 30 15

80 31 15

81 32 16

83 33 16

84 34 17

86 35 17

87 36 18

89 37 18

90 38 19

32

32

65

8

chunk
content

32

20

bytes

keccack256
hash

BMT
hash

 4096

sign

account

identifier = I

32

20payload id

I

address

I

signature

span

payload

single owner
chunk

Fig. 7. Single owner chunk (SOC). Unlike content-addressed chunks, SOCs obtain their integrity through the signature of their

(single) owner and cross-owner immutability through hashing the owner’s address in the chunk address (effectively achieving access

control via namespacing).
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Let us assume 𝑐 is the content-addressed chunk we need to replicate; 𝑛 is the number of bits of entropy available to

find the nonces that generate 2
𝑘
perfectly balanced replicas; initialise a chunk array 𝜌 of length 2

𝑘
and start with 𝑛-bit

integer 𝑖 = 0 and replica counter 𝐶 = 0.

(1) Create the SOC ID by taking addr (𝑐) and changing the last byte (at index position 31) to 𝑖 .

(2) Calculate the the SOC address by concatenating ID 𝑖𝑑 and owner 𝑜13 and hash the result using the Keccak256

base hash 𝑎𝑖 := 𝐻 (𝑖𝑑 ⊕ 𝑜), and record 𝑐𝑖 = SOC (𝑖𝑑, 𝑜, 𝑐).
(3) Calculate the bin this hash belongs to by taking the 𝑘-bit prefix as big-endian binary number 𝑗 between

0 ≤ 𝑗 < 2
𝑘
.

(4) If 𝜌[ 𝑗] is unassigned, then let 𝜌[ 𝑗] := 𝑐𝑖 and increment 𝐶 .

(5) If 𝐶 = 2
𝑘
, then quit.

(6) Increment 𝑖 by one, if 𝑖 = 2
𝑛
, then quit.

(7) Repeat from Step 1.

With this solution, we are able to provide an arbitrary level of redundancy for the storage of data of any length.
14

Then, depending on the strategy, the downloader can choose which address to retrieve the chunk from. The obvious

choice is the replica closest to the requesting node’s overlay address. In other words, the last item of the sorted chunk

array 𝜌 using the comparison function:

𝑖 < 𝑗 ⇔ PO(Overlay(𝑛𝑜𝑑𝑒),Address(𝜌[𝑖])) < PO(Overlay(𝑛𝑜𝑑𝑒),Address(𝜌[ 𝑗])) (8)

If the probability of any replica being faulty is 𝜖 , then, assuming independence, the probability that 𝑛 parities are

faulty is 𝜖𝑛 . Here we can write 𝑛 = 𝑘 + 1; that is, we have one “original” chunk and the rest of them are the 𝑘 parities.

Keeping the overall error probability below 𝛼 then means that

𝜖𝑘+1 = 𝛼 (9)

must be satisfied. Taking logarithms on both sides and rearranging, we get

𝑘 =
log(𝛼)
log(𝜖) − 1. (10)

This is the number of parities of a singleton chunk required to keep the overall data corruption probability below 𝛼 .

The base of the log in Equation 10 is arbitrary. This means that if we use base-10 logarithms and assume that 𝛼 = 10
−6
,

we get the simpler

𝑘 =
6

| log
10
(𝜖) | − 1. (11)

For example, if the per-chunk error rate is ten percent (𝜖 = 0.1), then | log
10
(𝜖) | = | log

10
(1/10) | = 1, and so 𝑘 = 6/1−1 =

5 parities are needed. If instead the per-chunk error rate is just one percent (𝜖 = 0.01), then only 𝑘 = 6/2− 1 = 2 parities

are necessary.

In particular, for the same per-chunk error rates as in Table 1, we get:

5 PREFETCHING STRATEGIES FOR RETRIEVAL

When downloading, systematic per-level erasure codes allow for different prefetching strategies:

13
The SOC owner of dispersed replicas has the arbitrary private key 0x010...00 and the corresponding ether address is

0xdc5b20847f43d67928f49cd4f85d696b5a7617b5.
14
Note that if 𝑛 is small, then generating all 2

𝑘
balanced replicas may not be achievable, and if 𝑛 < 𝑘 , this is certainly not possible. In general, given 𝑛,𝑘

at least𝑚 miss has a probability of (1 −𝑚/2𝑘 )2𝑛 .
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Table 4. For a given per-chunk error rate (first column), how many parities (second column) are required of a single chunk to keep

the overall data corruption probability below 𝛼 = 10
−6
?

security

level

error

rate

parities

required

dispersed

replicas

none 0% 0 0

medium 1% 2 2

strong 5% 4 4

insane 10% 5 8

paranoid 50% 19 16

NONE = direct with no recovery; frugal

No prefetching takes place, RS parity chunks are ignored if present. Retrieval involves only the original chunks, no

recovery.

DATA = prefetching data but no recovery; cheap

Prefetching data-only chunks, RS parity chunks are ignored if present, no recovery.

PROX = distance-based selection; cheap

For all intermediate chunks, first retrieve𝑚 chunks that are expected to be the fastest to download (e.g., the𝑚

closest to the node).

RACE = latency optimised; expensive

Initiate requests for all chunks within the scope (max𝑚 + 𝑘) and will need to wait only for the first𝑚 chunks to

be delivered in order to proceed. This is equivalent to saying that the 𝑘 slowest chunk retrievals can be ignored,

therefore this strategy is optimal for latency at the expense of cost.

All in all, strategies using recovery can effectively overcome the occasional unavailability of chunks, be it due to

faults such as network contention, connectivity gaps in the Kademlia table, node churn, overpriced neighbourhoods, or

even malicious attacks targeting a specific neighbourhood.

Similarly, given a typical model of network latencies for chunk retrieval, erasure codes in RACE mode can guarantee

an upper limit on retrieval latencies.
15

6 CONCLUSION

This work presents a comprehensive strategy for enhancing data availability in decentralized storage by embedding

erasure coding directly into the Swarm chunk tree. By employing Reed–Solomon encoding at the level of packed

address chunks, the system achieves non-local redundancy without compromising the deterministic structure of

content addressing. The construction allows for user-configurable security levels, defined by quantifiable probabilities

of successful retrieval, and supports efficient decoding even under partial network failure. For edge cases involving

singleton chunks, the introduction of dispersed replicas ensures resilience through address-space diversification.

Furthermore, a spectrum of retrieval strategies is proposed to balance cost, latency, and robustness depending on

application needs. Together, these mechanisms form a robust foundation for scalable, fault-tolerant storage in adversarial

or unreliable environments.

15
For instance, in the temporally sensitive case of real-time video streaming, for any quality setting (bitrate and FPS), buffering times can be guaranteed if

the batch of chunks representing a time unit of media is encoded using its own scope(s) of erasure coding.
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