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A dream come true: deletable content in immutable storage
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This work introduces DREAM, a novel construct that enables deletable content in otherwise immutable, decentralised storage systems
such as Swarm. As an equitable and feasible response to the challenge of data destruction, DREAM reconciles the inherent persistence
of content-addressed storage with the practical needs, user preferences, and legal requirements of permanent access revocation. The
paper contributes a new deletion model based on access revocation, and presents a mechanism that allows data-sharing users to
grant—and later rescind—access to specific data for specific consumers. The solution leverages Swarm’s distributed storage architecture
to introduce a procedural way to retrieve decryption keys, realised by a network protocol. The resulting system achieves the desired
properties of deniability, revocability, expirability, addressability, and malleability without requiring trusted intermediaries or complex
cryptographic primitives. The approach preserves the censorship resistance of decentralised systems allowing for sovereign control
over data access by the original uploader, but not by any other party, thus avoiding any re-centralisation in order to achieve deletion.

Security analysis shows that access revocation remains effective even under pervasive adversarial control.
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This paper is structured as follows: Section 1 acknowledges the need for data deletion and explains why, in practice,
deletion is typically implemented and understood as removal of access. It presents the challenges of realising deletion
in decentralised storage systems, exploring the tension between censorship resistance and access control. Section 2
formalises the concept of deletion in the context of content-addressed networks like Swarm and derives the criteria
required for meaningful access revocation. Section 3 describes the technical construction of the DREAM protocol,
detailing its architecture, design rationale, and its five core properties. Section 4 analyses the protocol’s correctness and
behaviour under realistic network assumptions. Section 5 provides a security model and evaluates the system’s resilience
against adversarial behaviour, in particular, under conditions of pervasive network compromise. Section 6 discusses
the prerequisites for implementing DREAM and argues that adopting it would require only modest effort. Section 7
concludes by summarising the findings and highlighting the broader implications of user-friendly, access-controlled

deletion in the context of immutable storage.
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2 Trén & Diedrich

1 Introduction

The continuously increasing digitisation of data and the widespread use of cloud services in recent years have raised
well-justified concerns regarding privacy and control of personal information [13]. In response, regulators often impose
requirements for data removability with little regard for technical or practical feasibility. Beyond the truism that it is
virtually impossible to make material once seen unseen, legal and economic realities often mean that ostensibly ‘deleted’
data is merely hidden rather than physically erased. Social media platforms, for example, list a plethora of exceptions to
reserve the right to not actually delete the data of a ‘deleted” account [8]. And while they are generally obliged by law
to erase the data, some of their valid counter-arguments are themselves regulatory and legal requirements. Even at the
technical level, a local, high-performance database like Facebook’s workhorse, Apache Cassandra, does not actually
delete data [3] when it is flagged as ‘deleted, purely for the mundane reason of higher performance, i.e. lower cost.

But because entities that operate centralised infrastructure for digital publishing typically have full control over the
systems that serve their content, they can carry out the effective ‘deletion’ of data by simply denying access to it.

No wonder then that centralised gatekeeping is appealing from a regulatory standpoint: it can be summoned as a
convenient instrument of law enforcement. And sure enough, in case legal action is initiated, the law routinely forbids
the destruction of data that could constitute evidence. The centralized gatekeeper is thus morphed into a responsible
party with an effective, if paradoxical, course of action: not serving censored content, but preserving it.

Even though this can give the unwary a false sense of privacy, it illustrates a deeper issue with censorship: publishing
platforms possess the technological means to filter content, and centralised hosting makes it easy and economical to
exert control over it. What may have started out as a benign and sensible measure of content curation can gradually
transform into extant censorship [2, 5]. This is all the more problematic with social platforms [1, 6] that have gained
quasi-monopolistic status as a result of network effects [15]. This allowed governments to co-opt moderation tools
in service of political agendas [11]. And due to the high costs associated with switching platforms, content creators
increasingly find themselves ’deplatformed’ [14] for violating the arbitrary and frequently changing publishing rules of
the platforms they rely on. The ability to identify (central) hosts and coerce them through legal means to deny access to
content provides authorities with a cheap and easy tool to curtail freedom of speech.

Recognising how easily technically motivated solutions can be put in service of propaganda, manipulation and
surveillance has motivated the work of hackers for decades. The vision to enable censorship-resistant publishing has
been at the forefront of the decentralisation efforts they initiated. Since the early days of the cypherpunk movement in
the 1980s, censorship resistance has become a foundational principle of peer-to-peer storage networks, such as Swarm
[10].

In the decentralised paradigm of Web3, there is, as per its founding mission, no longer a single operating entity
controlling publishing platforms or hosting infrastructure. On the one hand, this renders censorship' infeasibly costly,
as intended. Content posted in a Web3 environment can disappear if it is not kept up. But the data is censorship-proof
in that its disappearance cannot be hastened by anyone other than the original poster. With a decentralized, immutable
platform, even the poster cannot make data disappear at will though. And thus, the potentially unintended yet permanent
exposure of personal data presents a serious concern for many individuals. Unless one accepts this as the price to
be paid for censorship resistence, there is a need for solutions that can restore the sense of security that centralised
gatekeepers provide [4].

LCensorship is understood as the act of a third party to make data unavailable. In practice, this is the case when said ’single operating entity controlling

publishing platforms or hosting infrastructure’ makes content inaccessible. Censorship is not the deletion of something previously posted by its original
poster or uploader, which, when enabled in whatever form, does not therefore violate censorship-resistance.
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A dream come true: deletable content in immutable storage 3

Prima facie, the intent to introduce a mechanism to delete content from immutable platforms seems futile. However,
immutability does not imply that content cannot be updated, nor that the network itself cannot change; it simply means
that once data is stored, it cannot be actively deleted.

To overcome this apparent paradox, we need to acknowledge that 1) the requirement of ‘deletion’ normally does not
refer to physical destruction of offending content but to the removal of access to it; combine this with the fact that 2) data
can be stored encrypted, making loss of access equivalent to ‘losing the key’; that 3) a deterministic random generator
can be provided trustlessly to create a key through a social process defined by a network protocol, as explained below;
that 4) immutable storage environments allow for adding data; and 5) that the act of adding seemingly unrelated content
can change the protocol’s output, altering the key derived from the same seed.

Armed with these ingredients, we can arrive at a mechanism to effectively delete data from an immutable, distributed
network, and comply with both user sentiment and legal requirements; and with this, neutralise a perceived advantage

of traditional, centralised data storage designs.

2 Deletion and revoking access

Requirements of removal of information in the sense of erasing it from all physical storage devices are both unenforceable
and impractical [9]. Even the most rigorous data protection audits do not require the erasure of offending data from
backup tapes. In general, the tacit assumption is that information ordered to be removed should become inaccessible
through typical, original, and precedented methods of access.

In what follows, we formulate what we think is the strongest meaningful definition of deletion applicable to
permissionless, immutable, decentralised storage systems and offer a construction that implements it. Importantly,
this approach is purely technical: it relies on the capabilities and costs of primary actors, rather than on procedural
measures that impose obligations on intermediaries to respect those actors’ rights. In other words, it operates completely
algorithmically in a trustless, distributed network, without expecting anyone to comply either out of altruistic motive
or under punitive threat.

The primary actors in this context are users who wish to share content (the uploaders) by granting read access to
a number of data consumers (downloaders). Granting read access is defined as providing a canonical reference to the
content, allowing the system to retrieve the complete information intended for disclosure. Revoking access means that
this canonical reference stops working.

It is obvious that any party that is privileged to access information could store, re-code, and potentially disseminate
it, so that the content can be made accessible at a later point in time, which practically bypasses any process that would
qualify as deletion (or removal of access). As there is no guaranteed protection against such adversity, any legally and
socially useful notion of deletion invariably defines a narrower case: taking away the viability to replay the same access
method at a lower cost than at least the full cost of storing the content.? At most, this could mean the full cost of storing
all content and/or all change logs of the publishing system holding the specific content, since it is impossible to know in
advance which piece of data may become relevant in the future. For example, deletion on a social media platform only
means that the original link no longer works; even if others may have downloaded and reposted the content elsewhere
under a new link.

Consequently, we will explore deletion as a scheme for uploading content with access revocation that meets the

following criteria:

That is, the total storage cost paid for the full size of the content starting from the time that access was revoked up until the attempted breach.
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4 Trén & Diedrich

specialisation
The uploader is able to choose at the time of publishing a specialised construct that will enable access revocation
later. From a user’s perspective, content that is meant to be reliably deleted should be marked or constructed as
such at the time of upload. The cost of uploading and preserving such content may be higher than the cost of
regular, censorship-resistant but non-deletable content.

sovereignty
Deletables presuppose access control, i.e. they are only available to a specific set of recipients. The uploader is the
unconditional owner of the deletable data and holds the exclusive means to selectively revoke access from any
party that was previously granted access. In other words, the uploader’s credentials are necessary to delete their
own deletable content, and no one else can delete it.

security
After access is revoked, a grantee is unable to access the content using the same reference or any other cue shorter
than the deleted content itself. That is, unless the downloader has stored at least as much as the size of the deleted

content itself, they will have no way of retrieving it.

Note that in the Swarm network, uploaded content may eventually be forgotten: if nobody pays for its storage and
the content is not frequently accessed, it will be garbage-collected. However, content no longer paid for to be stored

cannot be regarded as reliably deleted: the requirements of sovereignty and security are not strictly fulfilled.

3 Construction

The goal of this section is to arrive at a formal construction of a revocable access model for the distributed storage
network Swarm. We will base our exploration on chunks, the fundamental fixed-size storage units of Swarm’s distributed
storage model, DISC [12, §2]. The proposed DREAM construct implements a deletable content storage and access model

that fulfills the requirements of specialisation, sovereignty, and security.

3.1 Synopsis
The general approach of the contribution is that access to content can be revoked by taking away the decryption key.
For this to be possible, the key itself must be of volatile nature. In the proposed protocol, such a key (k) is constructed
for the grantee by data flowing through the network of Swarm nodes (see figure 2). Starting out as a chunk-length piece
of data generated from a random seed (g) it is sent to its destination wrapped as a content-addressed chunk beginning
its journey of transformation following a dream path. At each step, the chunk is picked up by a storer node in the
target neighbourhood, the content is modulated using local chunk data in the node’s storage as input (A function) then
once-again wrapped as a chunk, its content address determining in which neighbourhood the subsequent step will be
performed. After an arbitrary but fixed number of steps (n), the dream path leads back to the grantee and the key k is
extracted and can be used to reconstruct the deletable content C by decrypting its encrypted form C’ that is stored in
the network with k.

The uploader of deletable content does not need to play this script of collective construction: critically, because each
step takes input from data previously uploaded using the same postage stamp owned by the uploader, they have all
the data needed to simulate the protocol’s calculations. Once the owner mines a key by finding a path, the deletable

content (C) is encrypted, and the resulting encrypted content (C”) is then uploaded. To share a link to the content,

3In the context of Swarm, chunks with expired postage stamps.
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A dream come true: deletable content in immutable storage 5

the uploader shares a dream reference, a tuple (r, b, g) consisting of the Swarm reference r to the encrypted content
C’, a postage stamp batch reference to the batch ID b, and the generator seed g. The grantee retrieves the encrypted
content by the Swarm reference r. The batch id b and the generator seed g enable the grantee to obtain the key from
the network, triggering the path traversal to re-create the dream key k. The content plaintext C can be obtained by
decrypting C” with the key k. Since the key itself has the same length as the content, there is no incentive to store (r, k)
as an alternative, because it would take more storage than simply storing the content C.

Importantly, while the key to the data can be accessed through the network, it is never stored in it. This is what
makes revocation possible. Since the owner of the stamp (the uploader) controls that dataset, by virtue of uploading
extra data to any node’s local storage, they can change the spice coming from local data (figure 3). This is sufficient to

deflect the path which renders the key inaccessible, and thus effectively delete their content from the network.

3.2 Dream: deniable, revocable, expirable, addressable, malleable

The use of the word ‘dream’ alludes to the counterintuitive nature of the finding that deletion is even possible in an

immutable context. As a mnemonic acronym, it resolves to the 5 dream attributes that the proposed construct displays:

D deniable
The dream key constructed by the protocol is used for both encryption and decryption. Since any content chunk
(in fact, any arbitrary content) could be encrypted using it, the key’s association to any specific content is plausibly
deniable (see section 5).

R revocable
Access granted through dream keys is revocable. Revoking access from all parties, including oneself, is considered
deletion. What is actually revoked is the ability to retrieve the key, which invalidates the reference (r, b, g) to the
decrypted content.

E expirable
The scheme allows for one-time use in this design. By strategically limiting the Swarm postage stamp supply
associated with the key for its (re-)creation, the key can be made to only be retrievable once.

A addressable
Access can be granted to nodes in any neighbourhood h by mining a dream path of length n such that the last
chunk falls in h,* where only clients operating a node within a particular overlay address range are able to access
the content.

M malleable
The construct is resilient to churn and dynamic changes in network size; it is reusable across independent grantees

and upgradeable.

The dream protocol can be built on top of Swarm’s DISC® APIs as a pure second-layer solution. Despite its rich
feature set, the scheme does not use complex cryptographic primitives, but instead leverages the interplay of various

component subsystems.

4Swarm neighbourhoods are groups of nodes which are responsible for sharing the same chunks [10].

>DISC (Distributed Immutable Storage of Chunks) is a storage solution developed by Swarm based on a modified interpretation of a Kademlia DHT
(Distributed Hash Table) which has been specialized for data storage. Swarm’s implementation of a DHT differs in that it stores the content in the DHT
directly, rather than just storing a list of seeders who are able to serve the content. This approach allows for significantly faster and more efficient
retrieval of data.
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6 Trén & Diedrich

3.3 Chunk upload in Swarm

When content is uploaded to Swarm, as per its standard operation, the local Swarm client splits the data into 4-kilobyte
fragments, wraps each of them with some metadata and an address into a chunk, and pushes them to the network using
the push-sync protocol. This protocol governs the transmission of newly entered chunks to the neighbourhood where
they are to be stored.

A Swarm chunk c is an association (a, ¢’) of a 32-byte address a and chunk content ¢’. While Swarm has other chunk
types, the DREAM protocol focuses on the content-addressed chunk (CAC). CACs assume that their content ¢’ is the
chunk data p of length limited to 4096 bytes prepended with associated metadata m. Content-addressed chunks attain
their integrity by having their address deterministically derived from their content (including metadata and chunk

data) with the help of a one-way uniform digest, a hash function H.°

Data = byte{,4096} (1

Meta = byte{8} (2)

Address £ byte{32} 3)

Content = Datax Meta (4)

Chunk ¥  Address x Content (5)

CAC : Datax Meta — Chunk 6)

CAC(p, m) L (Keccak(m & BMT — root(p)), m @ p) ™)
We also define:

Address : Chunk — Address (8)

Address({(a,¢’)) £ a 9

Data : Chunk — Data (10)

Data((a,c’y) £ ¢'[8:1] (11)

The delivery of a new chunk to the node where it is to be stored can be seen as a request, to which one of the nodes
closest to the chunk’s hash position in the DHT eventually responds with an acknowledgment of custody. Swarm’s
network protocols use forwarding Kademlia, meaning that requests are routed to their destination through a series of
hops successively relayed by the forwarding nodes with ever increasing proximity to the target address, i.e. the chunk’s
address a. The response is passed back via the same route as the original request (backwarding) keeping the identity of
the request originator private, see figure 1.

Proximity is the inverse of the xor distance metric [7], while proximity order PO(x, y) returns the integer part of the
logarithm of the xor distance, which can be calculated as the number of matching initial bits of the two addresses x
and y.” Both proximity and proximity order apply to the address space shared by chunks and peers and play a crucial
role in Swarm’s peer-to-peer routing. Conversely, an address range is specified by a bit sequence, which defines a

neighbourhood of chunks (reserve), or peers. Given an address a and a non-negative integer depth d, the shared prefix

®The BMT hash is the Keccak256 hash of the metadata prepended to the root hash of the binary Merkle tree with a Keccak256 base hash over 32-byte
segments of the chunk data. This particular choice of H does not affect the correctness of our construction.
7As an example, the proximity order PO of 00101100 and 00110011 is 3, because the two 8-bit integers share the prefix 001, which is three bits long.
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A dream come true: deletable content in immutable storage 7

of all addresses in the range can be specified as the initial d bits of a, called a neighbourhood of depth d designated by a.
In practice, ‘neighbourhood’ refers to a cluster of nodes that are incentivised to relay as well as replicate and retain all

chunks whose addresses share such prefix with the addresses of nodes in the cluster.’
chunk
/\‘ T T
\_/ " ‘//

w_ d

receipt

Fig. 1. Push-syncing. The protocol is responsible for transferring newly uploaded chunks to the neighbourhood of peers where they
belong based on address proximity to the chunks’ content addresses. Uploader U posts a chunk to a local peer connection Fy, which
forwards it to a node closer to storer S, etc. The protocol’s request—response scheme uses the forwarding/backwarding Kademlia
relay.

Eventually, every chunk uploaded to Swarm is push-synced and forwarded by relaying nodes toward its address,
where it is stored in the nodes’ reserve. The length of the shared prefix prescribed to accept a neighbourhood as target
area is called storage depth depth,. It depends on the amount of storage space nodes must dedicate for their reserve and
the overall volume uploaded to the network. The depth is incremented as the volume doubles and decremented as the
volume halves.

This procedure requires spam protection to prevent mass injection of random chunks into the network, which could
expunge valuable chunks by triggering garbage collection on nodes that are pushed into capacity shortage. By requiring
postage stamps, Swarm imposes an upfront cost to uploads as an effective measure against such spamming. A chunk is
accepted into a node’s reserve only if it has a valid postage stamp attached. Revenue resulting from postage stamp

purchases constitute the reward pot for the redistribution game, compensating storage nodes for data retention.

3.4 High-level description

The central construct of this contribution is called the dream key (k). It is a random byte sequence the size of a chunk’s
data (p), and it acts as a symmetric key (for encryption and decryption) for the deletable content C. Revoking access
to the dream key k realises the deletion of the content C that was encrypted using it. The critical question we are
addressing is how access could be revoked in an immutable storage network. The solution is to never store the dream
key directly, but to have it collectively created by a set of nodes on demand, according to the protocol described below.’

The creation of the key starts with a chunk-sized (4096-byte) sequence py deterministically generated from a key-sized

(32-byte) seed g by a pseudo-random generator function G[4K1.!° The protocol then sends this first iteration stage

8Due to the Kademlia connectivity, the route to the node whose address is closest to the chunk can be found using local decisions by the nodes along
the path. Also, the forwarding-backwarding routing scheme makes it possible to do bandwidth accounting on a peer-to-peer basis and facilitates
micropayment settlements on a repeated-dealings basis with a subset of quasi-permanent peers that is logarithmic in the size of the network.
9As mentioned, since the dream key is as large as the data it encrypts, there is no advantage for anyone to store it instead of the decrypted data itself.
For example, the Keccak sponge function used throughout Ethereum for hashing does have this capability. Alternatively, the block cipher encryption
using the seed as initial nonce can be applied to a fixed constant chunk, such as all zeros.
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8 Trén & Diedrich

of the key as a content-addressed chunk (CAC) ¢y = (a9, m ® py) to the network, m being metadata that helps with
the key generation. As per Swarm’s push-sync protocol, a node v, in the neighbourhood designated by the chunk
address ay is guaranteed to eventually receive this chunk. Now, the dream protocol prescribes that the closest node
must update the key p, to p; in a specific way, using b and the key update function A; and then, wrapped as a new
chunk ¢; = (a;, m & py), sent it to the network again towards the neighbourhood designated by its new content address

a;. The next node that updates the dream chunk is considered the next node on the dream path (v . . . v, in figure 2).!!

to
node V;, ;

c output
) o B
@ dream pad k chunk C; 1
(3]
@ H(cy,)

Divy @
Cn-1
¢y
7/

P ‘ e;\elta function
O
Q_ @
~@

RN,
2

Fig. 2. Left: The path of the solid arrows represents the dream path, a series of neighbourhoods the dream protocol needs to traverse.
The grantee posts the chunk data p, generated from g wrapped as chunk ¢y = (ag, m ® py) no different from any other upload to
Swarm. Through multiple forwarding hops, ¢o arrives where it would be stored according to ay = Address(cg). The dream key is
created as the chunk-long piece of data journeys through the neighbourhoods designated by Address(co), . . ., Address(cy, ), picked
up by the closest nodes 1 . . . v;,. Eventually, at step n + 1, ¢, is received back by grantee G at address a who can extract the dream
key k = Data(cy,). Right: For each step 0 < i < n on the way node v; updates c; using the update function A. Information locally
available to nodes specific to that neighbourhood (BB; (b, c;)) serves as input to the key update function (A). The (1.) incoming chunk
¢; is used to (2.) find in the reserve the set BB, (b, ¢;), i.e. those chunks that have a valid postage stamp issued under b and fall into
the batch bucket designated by the input chunk address Address(c;). These chunks’ data are then XOR-ed together with the input
chunk data Data(c;) to create p;41, which is then wrapped into the chunk c;4+; and uploaded (3.).

Every node that receives the evolving dream chunk wraps it using data from its reserve at the time (BB;) as input for
A, ie. from the chunks that it is paid to store. If the protocol is initiated more than once, conditions may be different
due to network and reserve changes. This sensitivity of conditions to time is indicated with a subscript ¢. In fact, the
key invention is to use the ability of the uploader to change the reserves of a neighbourhood, to thereby derail a dream
path that previously resolved.

But as long as the initial key py and the metadata m are the same and the relevant parts of the reserve BB remain
unchanged, the system ends up generating the same dream key, which allows the grantee to decrypt and read the
deletable content.

Critically, by leaving control over these conditions in the hands of the uploader, they are the only party that can
actively block the grantee’s ability to calculate the key. Overall, this makes retrieving a deletable chunk a process
Note that, due to forwarding Kademlia, routing is realised by relaying the messages via multiple hops using keep-alive peer connections as the

transmission channel. However, for the dream protocol, these intermediate forwarding nodes are not relevant.
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deflected
to
nowhere

DPit1 %\

Di ‘ ediﬁereqf result

update

update chunk U

Fig. 3. Deletion. The dream path is shown as ‘deflected’ by a new chunk u stamped by postage batch b sent by uploader U (1.). An
uploader may alter the dream path by inserting a chunk at time ¢” into the relevant batch bucket in any step 0 < i < n. As a result,
BB;(b,c;) # BBy (b, c;) forall t < ¢’ < t” for at least those steps i effected. This change will result in a different output chunk c;41
at step i, whereby the dream path is deflected and will not terminate with the grantee who is now unable to retrieve the dream key to
access the ‘deleted’ content.

involving multiple nodes. Because calculating one part of the reference to a deletable chunk requires sorting through a
set of immutable chunks controlled by the uploader, the uploader’s ability to change this underlying set—by adding to

it—provides the mutability to take access away (figure 3).

3.5 Making up the dream

The specific way that each node in the dream path wraps the chunk that will become the dream key before sending it
on is described in the following (see figure 2). Let the 32-byte hash b be the ID of a postage batch, i.e. a set of stamps,
owned by uploader U. The node receiving a dream chunk looks b up in their batchstore by the prefix extracted from
the chunk metadata. We assume that this prefix will always match b’s ID uniquely, as long as b is valid at the time t of
receiving the chunk. Chunks in a bucket share a prefix corresponding to the uniformity depth v(b). In order to ensure
that nodes can always detect doubly signed storage slots, Swarm stipulates that neighbourhood depth must not exceed

uniformity depth for the entire period that the stamp is valid:
Vb € Batch,Vt,b is valid at t — v(b) > depth, (12)

Let BB; (b, a) represent the set of chunks belonging to batch b at time ¢ and fall into the bucket designated by a. Since
the chunks belonging to a bucket of a batch all share a prefix longer than the prefix shared by the storer nodes in the
neighbourhood, it is expected that all chunks in a batch bucket designated by a are stored in the reserves of nodes in
the relevant neighbourhood designated by a. It follows from equation 12 that neighbourhoods’ reserves must contain

entire buckets:

Va € Address, b € Batch,Vt, b is valid at t — BB;(b,a) C {c | PO(v,c) > depth,} (13)
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10 Trén & Diedrich

The key update function A updates the key by bitwise XOR-ing it with each chunk data belonging to batch b at block
height t and falling into the bucket designated by the input chunk’s address.

A : Batch X Chunk — Data (14)
A(b,{a;,c;)) : Data(c;)¥ \V  Data(c) (15)
ceBﬂb,ai)

If the bucket of batch b designated by a; is empty, then A returns Data(c;). In any case, the update function is locally
computable by any storer node within the neighbourhood designated by a;, as it will have all required input (reserve
chunks in BB, (b, a;)) stored.

Applying the update function A to its own output, by the next node, we can define the dream path II as follows:

I1 : Batchx Address — Chunk{n + 1} (16)

I1(b, g9) = Co, . - ., Cp such that (17)
X [4K] ifi=0

6 = CAC(p,b[0 : 8]) where p = g 9) l (18)

A(b,ci-1) otherwise

Finally, a dream pair (g, pn) is a particular pairing of a seed g that is the input to the generator function creating the
initial key po; and the dream key p,, the result of n applications of the key update function.

The starting point, seed g, such that the dream path ends after n steps in a neighbourhood a of nodes that U desires to
be the potential exclusive receivers of the deletable chunk’s payload, cannot be calculated directly. It is instead worked
out by trial-and-error, or in other words, g is mined.

Therefore, given a dream path of length n, a grantee overlay address a, and a batch b, the uploader needs to find the

generator g such that the last chunk of the dream path falls within a’s neighbourhood.

dream :  Address X Batch x Z* — P (Address X Data) (19)
dream(a,b,n) C  Address X Data (20)
(g, k) € dream(a,b,n) & k = Data(c,) A c, =11(b,g)[n + 11 A PO(a, Address(c,)) = d (21)

Since the hash function H used in calculating a, = Address(c,) is uniform, the chance of PO3ss(a, an) > dis 1in 24 As
a consequence, it is feasible for the uploader to find g for any sufficiently low depth d, which, in turn, allows them to

calculate the dream key k for a dream path ending at a.

3.6 The Dream Protocol

To calculate the dream key, grantees must rely on the network, where each recursive step i of the calculation for all
0 < i < n must be performed by the node closest to the input chunk’s address a;.

In order to guarantee the correct termination, the following criteria must be fulfilled:

— all buckets of batch b designated by g; for all 0 < i < n must be non-empty,

— the length of the prefix shared by the addresses of chunks in the same bucket must be greater than the storage
depth d of the network,

— the chunk ¢; of each step 0 < i < n must be sent to the neighbourhood designated by a; = Address(c;),

— nodes at each step 0 < i < n of the dream path must both compute the key update and push the output key as a
chunk to the network.
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A dream come true: deletable content in immutable storage 11

We define the dream network protocol as follows: Assuming uploader U mined a dream pair (g, k) of length n for
grantee at overlay a and nodes in the network listen to dream chunks, content-addressed chunks whose metadata
B is a prefix of a valid batch ID b. Once they receive dream chunk c;, and also look up b using prefix f, they then
find the chunks that are stamped with b, fall into the bucket of the input chunk address a;. The updated key output
kiv1 = A(b, ¢;) is then wrapped together with f as a content-addressed chunk c;+; = CAC(ki41, f) and uploaded to the
network to end up in the neighbourhood designated by a;+1 = Address(c;+1) as the next step on the dream path. The
node that is closest to a;4; then calculates the next step based on this input. If the protocol is followed up to n steps,
then the target node at address a receives ¢, from which it can extract k = Data(cy,).

The deletable dream chunk is constructed as follows: if uploader U wishes to grant downloader D (at overlay address
a) revocable access to chunk content C, then U chooses a postage batch b that it owns, and that is not completely filled. U
then by trying random seeds g, mines a dream pair (g, k) € dream(a, b, n), calculates the ciphertext C’ = C¥Vk and uploads
it to Swarm, obtaining the parity reference r = H(C"). Now U creates the dream chunk reference ref (C) = (r, b, g),

which must be privately shared with grantee D.

4 Analysis

Downloader D, in possession of a dream chunk reference ref (C) = (r, b, g) calculated by U, constructs py = G[4K1(g),
wraps it as the initial chunk ¢ = CAC(po, b[0 : 8]), and uploads it to Swarm. If and when D receives the dream chunk
¢ back, it extracts the dream key as the chunk payload k = Data(c).

D retrieves the parity data C’ using reference r, and then decodes the plaintext as C = C’Vk. The retrieval process is

trivially correct as long as:

(1) The parity data C’ is retrievable using standard retrieval methods.
(2) The dream protocol is followed by all cooperating nodes.
(3) The contents of the batch buckets along the dream path all remain unchanged.

We are now turning to access revocation, i.e. deleting content by making it inaccessible.

Uploader U had granted downloader D at address a access to content C through the dream reference (r, b, g).
U revokes D’s access by uploading extra chunks to the buckets batch b designated by the input chunk address
(Address(c;) for 0 < i < n). As a result, downloader D will no longer be able to retrieve content C. Because the output
of the key update function has changed, the subsequent chunk changes and the dream path is diverted. Since we
cannot know which nodes are colluding and malicious, the uploader needs to upload batch bucket changes to all

neighbourhoods on the dream path to reliably revoke access.

5 Security

The reference to a dream chunk does not leak any information about the step-count or the neighbourhoods involved.
Neither are the participants in the protocol aware of their position within the dream path, nor of any details about the
other neighbourhoods that are part of it, except for the immediate next one to which they are push-syncing their chunk.

The construction of the dream reference is safely deniable as long as no adversary gets hold of the actual encrypted
chunk of C’: if we consider our sensitive content C, and any uncontroversial chunk content A, then when creating C’,
the owner also encrypts A’ = AVk and uploads it. When asked about k, producing A’ makes the denial of other content,
including C’, more plausible. For a scenario where it cannot be assumed that no adversary can get hold of C’, both C
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12 Trén & Diedrich

and A can be asymmetrically encrypted with a public key of the grantee before being encrypted with k, to prevent
patterns showing in A’YC’ that can help breaking the symmetric encryption and thus prevent successful deletion.'?

As Swarm is a decentralised network, individual participants cannot (and should not) be trusted to play by the rules.
The built-in incentives are what encourage cooperative behaviour and help maintain a Nash equilibrium. To avoid
the situation that a single corrupt node in a neighbourhood could keep deleted chunks accessible, the mechanism for
deletion, i.e. the strategic update to the relevant bucket, should be applied to every neighbourhood of a dream path. A
sufficient condition for content deletion is then that in at least one neighbourhood all nodes are honest, i.e. will not store
and serve information that they should not.'?

Alternatively, a powerful adversary could potentially infiltrate every neighbourhood of Swarm and archive all
information that has ever been uploaded (without being able to decipher it). It could also keep logs of what was uploaded
in what order, which would allow it to serve ‘deleted’ content. However, there is a huge cost associated with such
indiscriminate archiving of all of Swarm’s content, in what is the only way to reliably defeat the dream construction.
Because the store would also contain all downloads, it is equivalent to the scenario where an adversary makes deletion
redundant by keeping all downloaded data, which is a case not commonly interpreted as defeating deletion.

We now turn to the discussion of how to calibrate the step count in relation to the security model using the notion
of a network-wide neighbourhood infiltration rate. For instance, a rate of % means that the chance of infiltration, in any
neighbourhood independently and uniformly across the network, is 1 in 2, implying that, on average, we can expect
half of the neighbourhoods in the network to contain a malicious and colluding node.

For access to be safely revoked, the owner uploads new chunks in each neighbourhood along the dream path. In
practice, the malicious node operators would not be able to tell which chunks are strategic updates to facilitate deletion.
But we will assume for the sake of the argument that malicious nodes are able and willing to disregard these new
chunks and, in an attempt to render the revocation of access impotent, respond to a request the same as before. If every
neighbourhood on the path contains at least one malicious node, it is, in principle, possible for the dream protocol to
return the unchanged response, and access is granted against the intention of the uploader, i.e. the protocol terminates
allowing access even though it was revoked. Given a specific dream path, however, if even a single neighbourhood on
the dream path is honest, they will respect the chunks that newly arrived since the construction and therefore, divert
the dream path, preventing it from terminating with the grantee.

Thus, for a breach of access to happen, all neighbourhoods must be malicious.'* In our security model, a neighbour-
hood is malicious with uniform and independent probability. For an overall infiltration rate of 1 out of k, the chance of
all neighbourhoods on a given random dream path being malicious is k~". For a security requirement of a success rate

of ¢ "nines", i.e. for an error rate less than 1077, we can formulate the requirement as
k" <107° (22)

Now, expressing k as a power of 10, k = 10%, taking the logarithm of both sides and multiplying by —1, we get

o

n> (23)

K

12An adversary possessing both A’ and C’ could calculate A’Y C” to find patterns in the result.

3With the growth of the Swarm network, the number of neighbourhoods increases whereas the membership size per neighbourhoods remains about the
same. Thus, the costs of attacking the proposed protocol increases with network size.

4This is a necessary condition, but not a sufficient one: even a malicious neighbourhood could act honestly, if the route happens to pass through one of
its honest nodes. This further, significant improvement of the odds that deletion succeeds is for simplicity ignored in the following.
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A dream come true: deletable content in immutable storage 13

As an example, with one in every 10 neighbourhoods being malicious (k = 1), we calibrate n > o: the dream path must

be as long as the number of nines expressing the desired success rate.'®

6 Implementation Constraints

Dream can be implemented on the existing Swarm network with only minor additions and modifications to the DISC
protocol, its proven data storage mechanism. Because the dream protocol is simple and strategically utilises the DISC
primitives, the effort required to implement it on Swarm would be modest.

Beyond its technical capacity, the size, speed, proven availability and maturity of the Swarm network!® also make it
suitable to serve as the underlying layer for the dream protocol. At a size of almost 10,000 nodes and a global spread
across four continents, the network is large and distributed enough to provide the maze of nodes needed to make dream
key creation and retrieval secure, and re-creation after intended deletion practically impossible.

The reference used by the grantees to retrieve content is more complex then Swarm’s standard reference. Analogous

to the way encryption is handled, the length of the reference allows to identify the referenced content as deletable.

7 Conclusion

Based on the concept of revocable access, this paper presents a technically novel yet practical mechanism to achieve
deletable content in the immutable context of peer-to-peer storage. By formalising deletion as the loss of access rather
than the physical erasure of data, the dream construct offers a secure, permissionless, and self-sovereign solution. The
system is designed to integrate seamlessly with Swarm’s DISC storage model and relies on simple yet robust protocol
interactions among peer nodes. Through the introduction of a distributed key and a network-driven computation
model, dream enables users to selectively revoke access to content without undermining the foundational principles of
decentralisation, immutability, and censorship resistance. The result is a useful balance between data permanence and
sovereign control, which offers a much-needed, viable approach to privacy-conscious publishing in the Web3 era.

The ability to delete data from immutable storage marks an essential contribution towards maturity for decentralised
storage technology. It adds a feature that centralised, mutable systems so far seemed to have as a permanent advantage
over the alternatives. Once established as a standard mode of storage, this can reduce regulatory friction and empower
users. It could enable a new class of applications to utilise decentralised storage, which depend on compliance to be
able to operate; and it caters to privacy-conscious users who wish stronger control over the data they share. While
DREAM realises a subset of the ‘right to be forgotten’ The fact that Swarm resists censorship while enabling deletion
points to a promising middle ground as a potential direction for regulators of commercial data hubs.

The way that DREAM uses Swarm’s network topology to ‘store” a key—and the fact that a simple upload can change
the conditions to effectively revoke access—may serve as an inspiration to rethink other seemingly intractable problems
of web3.
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153 6-hop-long path will guarantee access revocation with a certainty of 99.9999%.
163ee the Swarm dashboard at https://network.ethswarm.org/ and the monitoring tool called Swarm Scan at https://swarmscan.io/
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