
Batch utilization

György Barabás & Viktor Trón

1 Introduction

When pushing content to the Swarm network, uploaders are required to attach an attestation of
storage rent prepayment to each chunk they post. The latter is essentially a wallet registered
on the postage contract seeded with a balance from which storage rent is deduced by the
network-wide incentive system. Since this is reminiscent of buying a batch of postage stamps
and attaching one to each envelope to be posted, the attestations are called postage stamps and
the registered wallet a postage batch. One can think of batches as collections of storage slots.
The size of a batch is the number of storage slots and is always specified as a power of 2, with
the exponent called batch depth. Each slot can hold at most one chunk. Putting a chunk into a
slot is like issuing a postage stamp.

In practice, the attached postage stamps are digital signatures which associate the address
of a chunk with a storage slot reference. This in turn is composed of 1) a reference to the wallet
through its batch ID, and 2) a within-batch index. The fact that each slot can hold at most one
chunk ensures that batches cannot issue more stamps than the volume registered with them.
However, for an overissuance incident to be detectable locally by storer nodes, the within-batch
indices are arranged such that the highest ν bits match the prefix of the chunk they are assigned
to. These ν bits define n = 2ν buckets, the other half of the index is essentially a counter within
the buckets, which is sequentially assigned to chunks. If the batch depth is d and there are
n = 2ν buckets, then each bucket will hold a maximum of 2d−ν chunks. κ = d − ν, the log size
of a bucket is called bucket depth. The bucket size k = 2κ provides an exclusive upper bound
to within-bucket indices. This enforces a uniformity of stamp issuance across the 2ν buckets,
therefore ν is called uniformity depth.

Overusing a batch is now easily detected by any storer node as long as their storage depth is
shallower than the batch’s uniformity depth. In that case, each bucket of a batch is entirely
within the node’s reserve. Overissuance is therefore immediately caught, since the multiple
chunks assigned to the same slot index are seen by any node in that neighbourhood.

When all slots are filled, we say the batch is fully utilized. Although the a priori distribution
of chunks is uniform (and therefore the expected number of chunks falling into each bucket is the
same), their stochastic assignment means that there is necessarily some variance. It is practically
impossible to fully fill all buckets before eventually attempting to add to one that is already full.
We assume that the uploader is unable to affect the address of the chunks (unencrypted fixed
content) so in this scenario they are unable to continue uploading. Because of this, one may
legitimately consider the batch to be no longer usable. The number of stamps hitherto issued by
the batch is called its effective batch size, and its ratio to the batch size its batch utilization rate.

Below we explore the effect of batch parameters on their utilization rate. With an insight
into utilization rates as a function of the number of buckets n = 2ν and the size of buckets
k = 2κ, we will have a way to calibrate the expected effective batch size to be presented to users
in the context of a batch purchase user experience.

1

2 The effective utilization rate

The problem of assigning chunks to storage slots is analogous with the process of throwing
marbles, one after the other, in boxes which are initially empty. Each throw may end up in
any of the boxes with equal probability, and thus the marbles get distributed across the boxes
more or less evenly through time. However, the time will come when the boxes start filling
up. At that point, a marble may by chance end up being thrown into a box that is already
full, and thus get rejected. Substituting chunks for marbles, buckets for boxes, and the act of
signing a stamp for throwing a marble, we recover our original scenario. Marbles ending up in a
box with equal probability corresponds to the fact that a random chunk has equal chance of
being assigned to a bucket since the hash function has uniform distribution. Repeated rounds of
marble throwing correspond to consecutive stamping of multiple chunks of the uploaded content;
rounds constitute repeated independent trials.

Taking a particular bucket, each round of stamping is a “success” if the stamp falls into
the bucket, and a “failure” otherwise. Due to the fact that a marble may end up in each box
with equal chance, the probability of success is 1/n and the probability of failure is 1 − 1/n.
The number of stamps issued to the bucket after a given number of rounds is described by the
negative binomial distribution B(k, 1/n), where the first parameter k is the number of failed
rounds before we stop counting, and the second parameter is the probability of success.

The negative binomial distribution B(k, 1/n) is equivalent to the sum of k independent
geometrically distributed variables with parameter 1/n. If k is sufficiently large, the central
limit theorem ensures that this sum converges to a normal distribution. Formally, if Yi(1/n) are
independent geometrically distributed variables with parameter 1/n, and N (µ, σ2) is the normal
distribution with mean µ and variance σ2, then for large k we have

B(k, 1/n) =
k∑

i=1
Yi(1/n) ≈ N (kn, kn(n − 1)) (1)

The reason for the above form of the mean and variance in the normal distribution is as follows:
given a single geometrically distributed variable with parameter 1/n, its mean is n and its
variance is n(n − 1). When adding these up over k independent variables, we arrive at µ = kn
and σ2 = kn(n − 1) in the limiting normal distribution. Figure 1 shows how this normal
approximation performs, for various values of k. The fit is generally good, except when k and
the number of stamps are simultaneously low.

The negative binomial distribution estimates the number of rounds a particular bucket fills
up, given its size k and the number of buckets n. The rounds of stamping can be conceived of as
parallel independent attempts at filling up buckets. Stamps issued for failed rounds still end up
in one of the other n − 1 buckets, and therefore the same probability variable counts the total
stamps issued by the batch in all buckets at the time the first one fills up. Thus, we want to
know how the minimum of n independent negative binomial variates, X = mini∈{1...n} B(k, 1/n),
is distributed.

This so-called extreme value distribution would give us the distribution of the absolute
number of total rounds needed until the first event when one of the buckets gets full. Since this
is when the batch is considered effectively used up, this distribution can be used to calculate the
effective utilization rate of the batch.

The extreme value distribution corresponding to the minimum of n independent negative
binomial variates B(k, 1/n) can be obtained via two methods: either by numerical simulation,
or by using the normal approximation of Eq. 1 to get the minimum of n normal variates
X = mini∈{1...n} N (kn, kn(n − 1)) instead. In deriving the latter, we rely on the fact that the
extreme value distribution for the minimum of n independent variates drawn from the standard

2

https://en.wikipedia.org/wiki/Negative_binomial_distribution

max stamps in bucket: 8 max stamps in bucket: 32 max stamps in bucket: 256

−1000 0 1000 2000 3000 4000 5000 5000 10000 50000 60000 70000 80000

0e+00

2e−04

4e−04

6e−04

number of stamps

pr
ob

ab
ili

ty
 o

f f
ill

in
g

th
e

bu
ck

et

Distribution: negative binomial limiting normal

Figure 1: Approximating negative binomial distributions with limiting normal ones, for different
values of the maximum number of stamps k that fit in a bucket (panels). The number of buckets
n is fixed at 28 = 256. Overall, this approximation is robust even for low values of k. However,
the quality of the fit is poor when k and the number of stamps are simultaneously low. In that
case, the limiting normal distribution can even reach out into the meaningless negative region.
In those cases, the normal approximation should be avoided. By contrast, for larger values of k
the normal approximation becomes excellent everywhere.

normal distribution (with zero mean and unit variance) is known. It is the Gumbel distribution,
which reads

G(x; α, β) = 1
β

exp
[

x + α

β
− exp

(
x + α

β

)]
. (2)

Here x is the independent variable (in our case, the number of rounds of stamping), and α and
β are the location and scale parameters, respectively.1 They are in turn given by

α = Φ−1
(

1 − 1
n

)
,

β = Φ−1
(

1 − e−1

n

)
− α,

(3)

where e−1 = exp(−1) ≈ 0.368, n is the number of normal variates whose minimum we are looking
for, and Φ−1(·) is the the inverse of the error function. The mean and standard deviation of
the Gumbel distribution are, respectively, α + γβ and βπ/

√
6, where γ ≈ 0.5772 is the Euler–

Mascheroni constant. Its quantile function (which we will make use of below) is analytically
expressible, and reads

Q(p; G) = β log(− log(1 − p)) − α, (4)

where 0 < p < 1 is a probability quantile.
In our case, the normal distributions whose minimum we are looking for is not standard,

but has mean µ = kn instead of zero, and variance σ2 = kn(n − 1) instead of one. Therefore,
the Gumbel distribution needs to be appropriately rescaled. Denoting this scaled probability
1The Gumbel distribution is often given using the convention that one is looking for the maximum of n normal
variates, instead of their minimum. One can change between the two by simply flipping the sign of x.

3

https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Error_function

distribution by X , we have

X (x; µ, σ, α, β) = 1
σ

G
(

x − µ

σ
; α, β

)
(5)

(the overall factor of 1/σ restores the proper normalization of the scaled function). Consequently,
the mean also gets rescaled to µ − σ(α + γβ), the standard deviation to σβπ/

√
6, and the

quantile function to

Q(p; X) = µ − σ[α − β log(− log(1 − p))]

= kn −
√

kn(n − 1)
[
Φ−1

(
1 − 1

n

)
− Φ−1

(
1 − e−1

n

)
log(− log(1 − p))

]
,

(6)

where we used µ = kn, σ2 = kn(n − 1), and Eq. 3 to express α and β.
As a final step, we normalize this function by the product kn. Doing so gives the quantile

of stamps per bucket per chunk (since every bucket can hold k chunks), and is precisely the
effective utilization rate we set out to obtain (or, rather, its pth quantile). Denoting this by Ueff,
we have

Ueff = Q(p; X)
kn

= 1 −
√

2ν − 1
2κ+ν

[
Φ−1

(
1 − 1

2ν

)
− Φ−1

(
1 − e−1

2ν

)
log(− log(1 − p))

]
, (7)

where κ = log2(k) and ν = log2(n), as before.
The meaning of the quantile function is that only a fraction p of variates are smaller than or

equal to Q(p; X). For example, Q(0.001; X) is the number of stamps such that only one in a
thousand (0.1%) of users will get their first bucket filled with fewer stamps. This can be used to
protect Swarm users from being surprised at the effective utilization of their postage batches.
We therefore calibrate batch volumes using the above p = 0.001 as a reasonable worst-case
scenario. That is, given n and k, we do not say that the user now has 2n+k chunks of data
at their disposal. Instead, we multiply this theoretical maximum volume by Ueff after setting
p = 0.001, and report that value as the amount of available storage space.

As mentioned before, the approximation of Eq. 7 breaks down when k and p are simultaneously
small. Since we decided to fix p = 0.001 ≪ 1, we must turn to numerical simulations for estimating
the normalized quantile function for smaller values of k. The simulation procedure is simple: we
generate n negative binomially distributed random variates B(k, 1/n) and record their minimum,
then repeat this 100 000 times. Using these 100 000 minima, we sort them in increasing order
and read off the value of the 1000th result to obtain the 0.1% quantile. Finally, we normalize
the outcome by kn. Figure 2 shows both the simulated and analytically approximated results.
As a rule of thumb, Eq. 7 yields a good approximation for κ ≥ 8.

We use simulated results for 0 ≤ κ ≤ 10 and Eq. 7 for κ ≥ 11 to generate effective utilization
rates (Table 1). The table provides these values for uniformity depths ν = 12 and ν = 16, and
log bucket sizes κ ranging from 0 to 25. Above this bucket size, the effective utilization rate is
already above 99.9%, which we consider large enough to justify no subsequent calibrations on
the theoretical volumes.

3 Packed address chunks and erasure coding

In principle, we now have all the tools to compute how much space a user can be expected to
utilize: we take ν and κ, look up their combination in Table 1, and multiply the corresponding
volume by Ueff in the same row. For example, given a uniformity depth of ν = 16 (assumed to

4

log2 buckets : 12 log2 buckets : 16

5 10 15 5 10 15

−1

0

1

log2 bucket size

ut
ili

za
tio

n
simulated

analytical

Figure 2: Effective utilization rates (ordinate) against log bucket size κ (abscissa) for different
values of uniformity depth ν (12 in the left and 16 in the right panel). Blue points, estimated up
to κ = 10, are simulated effective utilization rates (0.1% quantiles, normalized by 2ν+κ). Yellow
points are calculated from the analytical approximation of Eq. 7. The points are connected by
lines for visual clarity. For small κ, the analytical approximation breaks down, so one must use
the simulated results. The match between the approximation and the simulations is already
good for κ = 8, and they are practically indistinguishable for κ = 10.

be a system-wide setting) and a user who bought postage stamps at a batch depth of κ = 11,
the storage space guaranteed would not be the theoretical maximum volume of 549.76 GB, but
549.76 GB · 87.39% = 480.43 GB instead. However, this is still an overestimate of the amount
of data the user will be able to upload due to two factors: packed address chunks (PACs) and
erasure coding.

Swarm represents files via the Swarm hash tree—a Merkle tree with a branching factor of
either 128 (unencrypted files) or 64 (encrypted files). Only the leaves of the tree store the
original data; the nodes contain chunk references (plus an encryption key for encrypted files).
Those nodes are the PACs. It is easy to calculate what fraction of a Swarm file is made up by
them. Let the branching factor be b (either 64 or 128, depending on the presence or absence of
encryption), the number of PACs be P , and the number of chunks in the file (without PACs) be
N . The tree structure means that, at every level, another factor of 1/b multiplies the fraction of
chunks that are PACs. Mathematically,

P = N

(1
b

+ 1
b2 + 1

b3 . . .

)
, (8)

with the sum having as many terms as the number of levels in the tree. In practice, we can
give an upper bound to the fraction of PACs by assuming that the number of levels is formally
infinite. This turns the above sum into an infinite geometric series, which converges very rapidly
due to b being large. Using the summation formula for an infinite geometric series, we obtain

P = N
∞∑

k=1

1
bk

= N

b − 1 . (9)

The total number of chunks is therefore N + P = N + N/(b − 1) = Nb/(b − 1). That is, one
has an overhead of b/(b − 1) for each file, on top of its original size. This overhead is 128/127
(unencrypted case) or 64/63 (encrypted case).

Continuing with our previous numerical example of ν = 16 and κ = 11: assuming that the
files are unencrypted, the effectively usable volume is not simply 549.76GB ·87.39% = 480.43GB,

5

ν κ volume Ueff
12 0 16.78 MB 0%
12 1 33.55 MB 0.02%
12 2 67.11 MB 1.2%
12 3 134.22 MB 7.67%
12 4 268.44 MB 19.58%
12 5 536.87 MB 34.53%
12 6 1.07 GB 49.31%
12 7 2.15 GB 61.48%
12 8 4.29 GB 71.61%
12 9 8.59 GB 79.35%
12 10 17.18 GB 85.06%
12 11 34.36 GB 88.34%
12 12 68.72 GB 91.76%
12 13 137.44 GB 94.17%
12 14 274.88 GB 95.88%
12 15 549.76 GB 97.09%
12 16 1.10 TB 97.94%
12 17 2.20 TB 98.54%
12 18 4.40 TB 98.97%
12 19 8.80 TB 99.27%
12 20 17.59 TB 99.48%
12 21 35.18 TB 99.64%
12 22 70.37 TB 99.74%
12 23 140.74 TB 99.82%
12 24 281.47 TB 99.87%
12 25 562.95 TB 99.91%

ν κ volume Ueff
16 0 268.44 MB 0%
16 1 536.87 MB 0.01%
16 2 1.07 GB 0.63%
16 3 2.15 GB 5.26%
16 4 4.29 GB 16.14%
16 5 8.59 GB 30.48%
16 6 17.18 GB 45.33%
16 7 34.36 GB 58.49%
16 8 68.72 GB 69.02%
16 9 137.44 GB 77.37%
16 10 274.88 GB 83.59%
16 11 549.76 GB 87.39%
16 12 1.10 TB 91.08%
16 13 2.20 TB 93.7%
16 14 4.40 TB 95.54%
16 15 8.80 TB 96.85%
16 16 17.59 TB 97.77%
16 17 35.18 TB 98.42%
16 18 70.37 TB 98.89%
16 19 140.74 TB 99.21%
16 20 281.47 TB 99.44%
16 21 562.95 TB 99.61%
16 22 1.13 PB 99.72%
16 23 2.25 PB 99.8%
16 24 4.50 PB 99.86%
16 25 9.01 PB 99.9%

Table 1: Effective utilization rates (Ueff) of volumes of postage batches. Here ν = log2(n) is
the log number of buckets (1st column of tables), and κ = log2(k) is the log batch depth (2nd
column). The left table is for ν = 12; the right one is for ν = 16. The theoretical maximum
number of chunks that can be stored is 2ν+κ = kn, and since one chunk is 4 KB in size, the
maximum volume is 2ν+κ · 4 KB (3rd column). The calculated utilization rates (4th column)
were obtained via numerical simulations for κ ≤ 10, and by using the analytical approximation
of Eq. 7 for κ > 10.

as calculated earlier. Instead, this must additionally be divided by the overhead of 128/127,
resulting in 476.68 GB of available space. If the files are encrypted, then the overhead to divide
by is 64/63, giving 472.93 GB.

Apart from PACs (which are always used), there is optional erasure coding that users
can choose to bolster the retrievability of their files. As elaborated elsewhere,2 this works by
partitioning each 128-chunk sequence (or 64-chunk sequence, for encrypted files) into m “original”
data chunks and p parity chunk, such that losing any p of the m + p chunks would still allow
one to perfectly reconstruct the original file. Table 2 summarizes m and p for each of the five
available erasure levels in Swarm.
2Trón et al. (2024) Non-local redundancy: Erasure coding and dispersed replicas for robust retrieval in the Swarm
peer-to-peer network. arXiv, 2409.01259, doi: 10.48550/arXiv.2409.01259

6

security unencrypted encrypted
level name chunks parities chunks parities

0 none 128 0 64 0
1 medium 119 9 59 9
2 strong 107 21 53 21
3 insane 97 31 48 31
4 paranoid 38 90 19 90

Table 2: Security levels for the five possible levels of erasure coding in Swarm (columns 1-2),
with the corresponding compositions of every 128-chunk sequence for unencrypted (columns
3-4) and encrypted (columns 5-6) content. Columns 3 and 4 always sum to 128, as does twice
column 5 plus column 6 (with potential rounding error to 127 due to the fact that encrypted
chunks take up twice as much space as unencrypted ones).

For the same example as above: assuming that a user uploads unencrypted files at the
strong erasure level, we see from Table 2 that 21 parity chunks are added to every 107 original
data chunks, per each 128-chunk data segment. This means an additional overhead of 128/107
on each file. Thus, the usable effective volume is not 549.76 GB · 87.39% · (127/128) = 476.68 GB,
but 549.76 GB · 87.39% · (127/128) · (107/128) = 398.47 GB. This is the final, effectively usable
space that can be guaranteed to the user, given ν = 16 and κ = 11, no encryption, and strong
erasure levels.

Denoting the PAC overhead by Hp and the erasure overhead by He, the formula for the final
effective volume Veff is as follows:

Veff = 2ν+κ Ueff
HpHe

· 4 KB. (10)

Here kn = 2ν+κ is the theoretical maximum volume (in numbers of chunks), Ueff discounts this
with the effective utilization rate as calculated in Section 2, and HpHe further discounts it by
taking packed address chunks and erasure coding into account. We multiply by 4 KB in the end,
because that is the size of each chunk. Tables 3-6 summarize all effective volumes for ν = 12
(Tables 3 and 5) and ν = 16 (Tables 4 and 6), for unencrypted (Tables 3 and 4) and encrypted
(Tables 5 and 6) content, and for batch depths κ ranging from 0 to 25.

7

κ volume none medium strong insane paranoid
0 16.78 MB 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B
1 33.55 MB 8.13 kB 7.56 kB 6.79 kB 6.16 kB 2.41 kB
2 67.11 MB 800.60 kB 744.31 kB 669.25 kB 606.71 kB 237.68 kB
3 134.22 MB 10.21 MB 9.49 MB 8.54 MB 7.74 MB 3.03 MB
4 268.44 MB 52.16 MB 48.49 MB 43.60 MB 39.53 MB 15.48 MB
5 536.87 MB 183.92 MB 170.99 MB 153.75 MB 139.38 MB 54.60 MB
6 1.07 GB 525.29 MB 488.36 MB 439.11 MB 398.07 MB 155.95 MB
7 2.15 GB 1.31 GB 1.22 GB 1.10 GB 992.70 MB 388.89 MB
8 4.29 GB 3.05 GB 2.84 GB 2.55 GB 2.31 GB 906.00 MB
9 8.59 GB 6.76 GB 6.29 GB 5.65 GB 5.13 GB 2.01 GB

10 17.18 GB 14.50 GB 13.48 GB 12.12 GB 10.99 GB 4.30 GB
11 34.36 GB 30.12 GB 28.00 GB 25.18 GB 22.82 GB 8.94 GB
12 68.72 GB 62.56 GB 58.16 GB 52.30 GB 47.41 GB 18.57 GB
13 137.44 GB 128.42 GB 119.39 GB 107.35 GB 97.32 GB 38.12 GB
14 274.88 GB 261.49 GB 243.10 GB 218.59 GB 198.16 GB 77.63 GB
15 549.76 GB 529.57 GB 492.33 GB 442.68 GB 401.31 GB 157.21 GB
16 1.10 TB 1.07 TB 993.32 GB 893.15 GB 809.68 GB 317.19 GB
17 2.20 TB 2.15 TB 2.00 TB 1.80 TB 1.63 TB 638.30 GB
18 4.40 TB 4.32 TB 4.02 TB 3.61 TB 3.27 TB 1.28 TB
19 8.80 TB 8.66 TB 8.05 TB 7.24 TB 6.57 TB 2.57 TB
20 17.59 TB 17.36 TB 16.14 TB 14.52 TB 13.16 TB 5.16 TB
21 35.18 TB 34.78 TB 32.34 TB 29.08 TB 26.36 TB 10.33 TB
22 70.37 TB 69.64 TB 64.74 TB 58.21 TB 52.77 TB 20.67 TB
23 140.74 TB 139.38 TB 129.58 TB 116.52 TB 105.63 TB 41.38 TB
24 281.47 TB 278.92 TB 259.30 TB 233.16 TB 211.37 TB 82.80 TB
25 562.95 TB 558.04 TB 518.81 TB 466.49 TB 422.89 TB 165.67 TB

Table 3: Assuming ν = 12 and unencrypted files, this table lists, for various values of the
batch depth κ (1st column), the theoretical maximum volume 2ν+κ · 4 KB (2nd column) and
the effective usable volumes for the five different erasure levels available in Swarm (last five
columns). The values in these last five columns were calculated using Eq. 10.

8

κ volume none medium strong insane paranoid
0 268.44 MB 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B
1 536.87 MB 44.70 kB 41.56 kB 37.37 kB 33.88 kB 13.27 kB
2 1.07 GB 6.66 MB 6.19 MB 5.57 MB 5.05 MB 1.98 MB
3 2.15 GB 112.06 MB 104.18 MB 93.68 MB 84.92 MB 33.27 MB
4 4.29 GB 687.62 MB 639.27 MB 574.81 MB 521.09 MB 204.14 MB
5 8.59 GB 2.60 GB 2.41 GB 2.17 GB 1.97 GB 771.13 MB
6 17.18 GB 7.73 GB 7.18 GB 6.46 GB 5.86 GB 2.29 GB
7 34.36 GB 19.94 GB 18.54 GB 16.67 GB 15.11 GB 5.92 GB
8 68.72 GB 47.06 GB 43.75 GB 39.34 GB 35.66 GB 13.97 GB
9 137.44 GB 105.51 GB 98.09 GB 88.20 GB 79.96 GB 31.32 GB

10 274.88 GB 227.98 GB 211.95 GB 190.58 GB 172.77 GB 67.68 GB
11 549.76 GB 476.68 GB 443.16 GB 398.47 GB 361.23 GB 141.51 GB
12 1.10 TB 993.65 GB 923.78 GB 830.63 GB 753.00 GB 294.99 GB
13 2.20 TB 2.04 TB 1.90 TB 1.71 TB 1.55 TB 606.90 GB
14 4.40 TB 4.17 TB 3.88 TB 3.49 TB 3.16 TB 1.24 TB
15 8.80 TB 8.45 TB 7.86 TB 7.07 TB 6.41 TB 2.51 TB
16 17.59 TB 17.07 TB 15.87 TB 14.27 TB 12.93 TB 5.07 TB
17 35.18 TB 34.36 TB 31.94 TB 28.72 TB 26.04 TB 10.20 TB
18 70.37 TB 69.04 TB 64.19 TB 57.71 TB 52.32 TB 20.50 TB
19 140.74 TB 138.54 TB 128.80 TB 115.81 TB 104.99 TB 41.13 TB
20 281.47 TB 277.72 TB 258.19 TB 232.16 TB 210.46 TB 82.45 TB
21 562.95 TB 556.35 TB 517.23 TB 465.07 TB 421.61 TB 165.17 TB
22 1.13 PB 1.11 PB 1.04 PB 931.23 TB 844.20 TB 330.72 TB
23 2.25 PB 2.23 PB 2.07 PB 1.86 PB 1.69 PB 661.97 TB
24 4.50 PB 4.46 PB 4.15 PB 3.73 PB 3.38 PB 1.32 PB
25 9.01 PB 8.93 PB 8.30 PB 7.46 PB 6.77 PB 2.65 PB

Table 4: As Table 3, but with ν = 16.

9

κ volume none medium strong insane paranoid
0 16.78 MB 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B
1 33.55 MB 8.06 kB 7.43 kB 6.68 kB 6.05 kB 2.39 kB
2 67.11 MB 794.30 kB 732.25 kB 657.78 kB 595.72 kB 235.81 kB
3 134.22 MB 10.13 MB 9.34 MB 8.39 MB 7.60 MB 3.01 MB
4 268.44 MB 51.75 MB 47.70 MB 42.85 MB 38.81 MB 15.36 MB
5 536.87 MB 182.48 MB 168.22 MB 151.11 MB 136.86 MB 54.17 MB
6 1.07 GB 521.16 MB 480.44 MB 431.58 MB 390.87 MB 154.72 MB
7 2.15 GB 1.30 GB 1.20 GB 1.08 GB 974.73 MB 385.83 MB
8 4.29 GB 3.03 GB 2.79 GB 2.51 GB 2.27 GB 898.87 MB
9 8.59 GB 6.71 GB 6.19 GB 5.56 GB 5.03 GB 1.99 GB

10 17.18 GB 14.38 GB 13.26 GB 11.91 GB 10.79 GB 4.27 GB
11 34.36 GB 29.88 GB 27.55 GB 24.74 GB 22.41 GB 8.87 GB
12 68.72 GB 62.07 GB 57.22 GB 51.40 GB 46.55 GB 18.43 GB
13 137.44 GB 127.41 GB 117.45 GB 105.51 GB 95.55 GB 37.82 GB
14 274.88 GB 259.43 GB 239.16 GB 214.84 GB 194.57 GB 77.02 GB
15 549.76 GB 525.40 GB 484.35 GB 435.09 GB 394.05 GB 155.98 GB
16 1.10 TB 1.06 TB 977.21 GB 877.84 GB 795.02 GB 314.70 GB
17 2.20 TB 2.13 TB 1.97 TB 1.77 TB 1.60 TB 633.27 GB
18 4.40 TB 4.28 TB 3.95 TB 3.55 TB 3.21 TB 1.27 TB
19 8.80 TB 8.60 TB 7.92 TB 7.12 TB 6.45 TB 2.55 TB
20 17.59 TB 17.23 TB 15.88 TB 14.27 TB 12.92 TB 5.11 TB
21 35.18 TB 34.51 TB 31.81 TB 28.58 TB 25.88 TB 10.24 TB
22 70.37 TB 69.09 TB 63.69 TB 57.22 TB 51.82 TB 20.51 TB
23 140.74 TB 138.29 TB 127.48 TB 114.52 TB 103.71 TB 41.05 TB
24 281.47 TB 276.72 TB 255.10 TB 229.16 TB 207.54 TB 82.15 TB
25 562.95 TB 553.65 TB 510.40 TB 458.49 TB 415.24 TB 164.36 TB

Table 5: As Table 3, but with encrypted content.

10

κ volume none medium strong insane paranoid
0 268.44 MB 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B
1 536.87 MB 44.35 kB 40.89 kB 36.73 kB 33.26 kB 13.17 kB
2 1.07 GB 6.61 MB 6.09 MB 5.47 MB 4.96 MB 1.96 MB
3 2.15 GB 111.18 MB 102.49 MB 92.07 MB 83.38 MB 33.01 MB
4 4.29 GB 682.21 MB 628.91 MB 564.95 MB 511.65 MB 202.53 MB
5 8.59 GB 2.58 GB 2.38 GB 2.13 GB 1.93 GB 765.05 MB
6 17.18 GB 7.67 GB 7.07 GB 6.35 GB 5.75 GB 2.28 GB
7 34.36 GB 19.78 GB 18.24 GB 16.38 GB 14.84 GB 5.87 GB
8 68.72 GB 46.69 GB 43.04 GB 38.66 GB 35.02 GB 13.86 GB
9 137.44 GB 104.68 GB 96.50 GB 86.69 GB 78.51 GB 31.08 GB

10 274.88 GB 226.19 GB 208.52 GB 187.31 GB 169.64 GB 67.15 GB
11 549.76 GB 472.93 GB 435.98 GB 391.64 GB 354.69 GB 140.40 GB
12 1.10 TB 985.83 GB 908.81 GB 816.39 GB 739.37 GB 292.67 GB
13 2.20 TB 2.03 TB 1.87 TB 1.68 TB 1.52 TB 602.12 GB
14 4.40 TB 4.14 TB 3.81 TB 3.43 TB 3.10 TB 1.23 TB
15 8.80 TB 8.39 TB 7.73 TB 6.94 TB 6.29 TB 2.49 TB
16 17.59 TB 16.93 TB 15.61 TB 14.02 TB 12.70 TB 5.03 TB
17 35.18 TB 34.09 TB 31.43 TB 28.23 TB 25.57 TB 10.12 TB
18 70.37 TB 68.50 TB 63.15 TB 56.72 TB 51.37 TB 20.34 TB
19 140.74 TB 137.45 TB 126.71 TB 113.82 TB 103.08 TB 40.80 TB
20 281.47 TB 275.53 TB 254.01 TB 228.18 TB 206.65 TB 81.80 TB
21 562.95 TB 551.97 TB 508.85 TB 457.10 TB 413.98 TB 163.87 TB
22 1.13 PB 1.11 PB 1.02 PB 915.26 TB 828.91 TB 328.11 TB
23 2.25 PB 2.21 PB 2.04 PB 1.83 PB 1.66 PB 656.76 TB
24 4.50 PB 4.43 PB 4.08 PB 3.67 PB 3.32 PB 1.31 PB
25 9.01 PB 8.86 PB 8.17 PB 7.34 PB 6.64 PB 2.63 PB

Table 6: As Table 3, but with ν = 16 and with encrypted content.

11

	Introduction
	The effective utilization rate
	Packed address chunks and erasure coding

